CS2113/T Jan '19
  • Week 1 [Jan 14]
  • Week 2 [Jan 21]
  • Week 3 [Jan 28]
  • Week 4 [Feb 4]
  • Week 5 [Feb 11]
  • Week 6 [Feb 18]
  • Week 7 [Mar 4]
  • Week 8 [Mar 11]
  • Week 9 [Mar 18]
  • Week 10 [Mar 25]
  • Week 11 [Apr 1]
  • Week 12 [Apr 8]
  • Week 13 [Apr 15]
  • Textbook
  • Admin Info
  • Report Bugs
  • Slack
  • Forum
  • Project Info
  • Instructors
  • Announcements
  • File Submissions
  • Tutorial Schedule
  • Java Coding Standard
  • samplerepo-things
  • Addressbook-level1
  • Addressbook-level2
  • Addressbook-level3
  • Addressbook-level4
  • Projects List
  • config.json templates for Reposense
  • Project Code Dashboard (BETA)
  • Repl.it classroom
  • Previous WeekNext Week

    Week 3 [Jan 28]

    • We start formal tutorials this week. The tutorial time table is on the module website.

    • There is graded project task this week!

    • Note that the official ⏰ deadline to achieve weekly project tasks is the midnight before your tutorial. Our scripts that detect your work run at midnight and only the work that's done by midnight will be eligible for marks (for cases where the task is graded).

    Team formation

    • We will form project teams at the start of the tutorial this week; please arrive on time. If you are not there at the team forming time we'll have to put you into a team randomly.

    Additional OOP topics carried forward from week 2


    [W3.1] OOP: Inheritance

    [W3.1a] Paradigms → Object Oriented Programming → Inheritance → What

    Can explain the meaning of inheritance

    The OOP concept Inheritance allows you to define a new class based on an existing class.

    For example, you can use inheritance to define an EvaluationReport class based on an existing Report class so that the EvaluationReport class does not have to duplicate code that is already implemented in the Report class. The EvaluationReport can inherit the wordCount attribute and the print() method from the base class Report.

    • Other names for Base class: Parent class, Super class
    • Other names for Derived class: Child class, Sub class, Extended class

    A superclass is said to be more general than the subclass. Conversely, a subclass is said to be more specialized than the superclass.

    Applying inheritance on a group of similar classes can result in the common parts among classes being extracted into more general classes.

    Man and Woman behaves the same way for certain things. However, the two classes cannot be simply replaced with a more general class Person because of the need to distinguish between Man and Woman for certain other things. A solution is to add the Person class as a superclass (to contain the code common to men and woment) and let Man and Woman inherit from Person class.

    Inheritance implies the derived class can be considered as a sub-type of the base class (and the base class is a super-type of the derived class), resulting in an is a relationship.

    Inheritance does not necessarily mean a sub-type relationship exists. However, the two often go hand-in-hand. For simplicity, at this point let us assume inheritance implies a sub-type relationship.

    To continue the previous example,

    • Woman is a Person
    • Man is a Person

    Inheritance relationships through a chain of classes can result in inheritance hierarchies (aka inheritance trees).

    Two inheritance hierarchies/trees are given below. Note that the triangle points to the parent class. Observe how the Parrot is a Bird as well as it is an Animal.

    Multiple Inheritance is when a class inherits directly from multiple classes. Multiple inheritance among classes is allowed in some languages (e.g., Python, C++) but not in other languages (e.g., Java, C#).

    The Honey class inherits from the Food class and the Medicine class because honey can be consumed as a food as well as a medicine (in some oriental medicine practices). Similarly, a Car is an Vehicle, an Asset and a Liability.

    Which of these are correct?

    • a. Superclass is more general than the subclass.
    • b. Child class is more specialized than the parent class.
    • c. A class can inherit behavior from its ancestor classes (ancestor classes = classes above it in the inheritance hierarchy).
    • d. Code reuse can be one benefit of inheritance.
    • e. A change to the superclass will not affect its subclasses.

    (a) (b) (c) (d)

    Explanation: (e) is incorrect. Because subclasses inherit behavior from the superclass, any changes to the superclass could affect subclasses.

    [W3.1b] Tools → UML → Class Diagrams → Inheritance → Inheritance

    Can interpret class inheritance in class diagrams

    You can use a triangle and a solid line (not to be confused with an arrow) to indicate class inheritance.

    Notation:

    Examples: The Car class inherits from the Vehicle class. The Cat and Dog classes inherit from the Pet class.

    [W3.1c] Paradigms → Object Oriented Programming → Inheritance → Overloading

    Can explain method overloading

    Method overloading is when there are multiple methods with the same name but different type signatures. Overloading is used to indicate that multiple operations do similar things but take different parameters.

    Type Signature: The type signature of an operation is the type sequence of the parameters. The return type and parameter names are not part of the type signature. However, the parameter order is significant.

    Method Type Signature
    int add(int X, int Y) (int, int)
    void add(int A, int B) (int, int)
    void m(int X, double Y) (int, double)
    void m(double X, int Y) (double, int)

    In the case below, the calculate method is overloaded because the two methods have the same name but different type signatures (String) and (int)

    • calculate(String): void
    • calculate(int): void
    [W3.1d] C++ to Java → Inheritance → Inheritance (Basics)

    Can use basic inheritance

    Given below is an extract from the -- Java Tutorial, with slight adaptations.

    A class that is derived from another class is called a subclass (also a derived class, extended class, or child class). The class from which the subclass is derived is called a superclass (also a base class or a parent class).

    A subclass inherits all the members (fields, methods, and nested classes) from its superclass. Constructors are not members, so they are not inherited by subclasses, but the constructor of the superclass can be invoked from the subclass.

    Every class has one and only one direct superclass (single inheritance), except the Object class, which has no superclass, . In the absence of any other explicit superclass, every class is implicitly a subclass of Object. Classes can be derived from classes that are derived from classes that are derived from classes, and so on, and ultimately derived from the topmost class, Object. Such a class is said to be descended from all the classes in the inheritance chain stretching back to Object. Java does not support multiple inheritance among classes.

    The java.lang.Object class defines and implements behavior common to all classes—including the ones that you write. In the Java platform, many classes derive directly from Object, other classes derive from some of those classes, and so on, forming a hierarchy of classes.

    The keyword extends indicates one class inheriting from another.

    Here is the sample code for a possible implementation of a Bicycle class and a MountainBike class that is a subclass of the Bicycle:

    public class Bicycle {
    
        public int gear;
        public int speed;
    
        public Bicycle(int startSpeed, int startGear) {
            gear = startGear;
            speed = startSpeed;
        }
    
        public void setGear(int newValue) {
            gear = newValue;
        }
    
        public void applyBrake(int decrement) {
            speed -= decrement;
        }
    
        public void speedUp(int increment) {
            speed += increment;
        }
    
    }
    
    public class MountainBike extends Bicycle {
    
        // the MountainBike subclass adds one field
        public int seatHeight;
    
        // the MountainBike subclass has one constructor
        public MountainBike(int startHeight, int startSpeed, int startGear) {
            super(startSpeed, startGear);
            seatHeight = startHeight;
        }
    
        // the MountainBike subclass adds one method
        public void setHeight(int newValue) {
            seatHeight = newValue;
        }
    }
    

    A subclass inherits all the fields and methods of the superclass. In the example above, MountainBike inherits all the fields and methods of Bicycle and adds the field seatHeight and a method to set it.

    Accessing Superclass Members

    If your method overrides one of its superclass's methods, you can invoke the overridden method through the use of the keyword super. You can also use super to refer to a hidden field (although hiding fields is discouraged).

    Consider this class, Superclass and a subclass, called Subclass, that overrides printMethod():

    public class Superclass {
    
        public void printMethod() {
            System.out.println("Printed in Superclass.");
        }
    }
    
    public class Subclass extends Superclass {
    
        // overrides printMethod in Superclass
        public void printMethod() {
            super.printMethod();
            System.out.println("Printed in Subclass");
        }
        public static void main(String[] args) {
            Subclass s = new Subclass();
            s.printMethod();
        }
    }
    

    Printed in Superclass.
    Printed in Subclass
    

    Within Subclass, the simple name printMethod() refers to the one declared in Subclass, which overrides the one in Superclass. So, to refer to printMethod() inherited from Superclass, Subclass must use a qualified name, using super as shown. Compiling and executing Subclass prints the following:

    Subclass Constructors

    A subclass constructor can invoke the superclass constructor. Invocation of a superclass constructor must be the first line in the subclass constructor. The syntax for calling a superclass constructor is super() (which invokes the no-argument constructor of the superclass) or super(parameter list) (to invoke the superclass constructor with a matching parameter list).

    The following example illustrates how to use the super keyword to invoke a superclass's constructor. Recall from the Bicycle example that MountainBike is a subclass of Bicycle. Here is the MountainBike (subclass) constructor that calls the superclass constructor and then adds initialization code of its own:

    public MountainBike(int startHeight, int startSpeed, int startGear) {
        super(startSpeed, startGear);
        seatHeight = startHeight;
    }
    

    Note: If a constructor does not explicitly invoke a superclass constructor, the Java compiler automatically inserts a call to the no-argument constructor of the superclass. If the superclass does not have a no-argument constructor, you will get a compile-time error. Object does have such a constructor, so if Object is the only superclass, there is no problem.

    Access Modifiers (simplified)

    Access level modifiers determine whether other classes can use a particular field or invoke a particular method. Given below is a simplified version of Java access modifiers, assuming you have not yet started placing your classes in different packages i.e., all classes are places in the root level. A full explanation of access modifiers is given in a later topic.

    There are two levels of access control:

    1. At the class level:

      • public: the class is visible to all other classes
      • no modifier: same as public

    2. At the member level:

      • public : the class is visible to all other classes
      • no modifier: same as public
      • protected: same as public
      • private: the member can only be accessed in its own class

    Background: Suppose we are creating a software to manage various tasks a person has to do. Two types of such tasks are,

    • Todos: i.e., things that needs to be done some day e.g., 'Read the book Lord of the Rings'
    • Deadlines: i.e., things to be done by a specific date/time e.g., 'Read the text book by Nov 25th'

    The Task class is given below:

    public class Task {
        protected String description;
    
        public Task(String description) {
            this.description = description;
        }
    
        public String getDescription() {
            return description;
        }
    }
    
    1. Write a Todo class that inherits from the Task class.
      • It should have an additional boolean field isDone to indicate whether the todo is done or not done.
      • It should have a isDone() method to access the isDone field and a setDone(boolean) method to set the isDone field.
    2. Write a Deadline class that inherits from the Todo class that you implemented in the previous step. It should have,
      • an additional String field by to store the details of when the task to be done e.g., Jan 25th 5pm
      • a getBy() method to access the value of the by field, and a corresponding setBy(String) method.
      • a constructor of the form Deadline(String description, String by)

    The expected behavior of the two classes is as follows:

    public class Main {
        public static void main(String[] args) {
            // create a todo task and print details
            Todo t = new Todo("Read a good book");
            System.out.println(t.getDescription());
            System.out.println(t.isDone());
    
            // change todo fields and print again
            t.setDone(true);
            System.out.println(t.isDone());
    
            // create a deadline task and print details
            Deadline d = new Deadline("Read textbook", "Nov 16");
            System.out.println(d.getDescription());
            System.out.println(d.isDone());
            System.out.println(d.getBy());
    
            // change deadline details and print again
            d.setDone(true);
            d.setBy("Postponed to Nov 18th");
            System.out.println(d.isDone());
            System.out.println(d.getBy());
        }
    }
    

    Read a good book
    false
    true
    Read textbook
    false
    Nov 16
    true
    Postponed to Nov 18th
    

    Todo class is given below. You can follow a similar approach for the Deadline class.

    public class Todo extends Task {
        protected boolean isDone;
    
        public Todo(String description) {
            super(description);
            isDone = false;
        }
    }
    

    [W3.2] IDEs: Basic refactoring

    [W3.2a] Implementation → Refactoring → What

    Can explain refactoring

    The first version of the code you write may not be of production quality. It is OK to first concentrate on making the code work, rather than worry over the quality of the code, as long as you improve the quality later. This process of improving a program's internal structure in small steps without modifying its external behavior is called refactoring.

    • Refactoring is not rewriting: Discarding poorly-written code entirely and re-writing it from scratch is not refactoring because refactoring needs to be done in small steps.
    • Refactoring is not bug fixing: By definition, refactoring is different from bug fixing or any other modifications that alter the external behavior (e.g. adding a feature) of the component in concern.

    💡 Improving code structure can have many secondary benefits: e.g.

    • hidden bugs become easier to spot
    • improve performance (sometimes, simpler code runs faster than complex code because simpler code is easier for the compiler to optimize).

    Given below are two common refactorings (more).

    Refactoring Name: Consolidate Duplicate Conditional Fragments

    Situation: The same fragment of code is in all branches of a conditional expression.

    Method: Move it outside of the expression.

    Example:

         
    if (isSpecialDeal()) {
        total = price * 0.95;
        send();
    } else {
        total = price * 0.98;
        send();
    }
    

     → 
    if (isSpecialDeal()){
        total = price * 0.95;
    } else {
        total = price * 0.98;
    }
    send();
    
    

         
    if is_special_deal:
        total = price * 0.95
        send()
    else:
        total = price * 0.98
        send()
    

     → 
    if is_special_deal:
        total = price * 0.95
    else:
        total = price * 0.98
        
    send()
    

    Refactoring Name: Extract Method

    Situation: You have a code fragment that can be grouped together.

    Method: Turn the fragment into a method whose name explains the purpose of the method.

    Example:

    void printOwing() {
        printBanner();
    
        //print details
        System.out.println("name:	" + name);
        System.out.println("amount	" + getOutstanding());
    }
    

    void printOwing() {
        printBanner();
        printDetails(getOutstanding());
    }
    
    void printDetails (double outstanding) {
        System.out.println("name:	" + name);
        System.out.println("amount	" + outstanding);
    }
    
    def print_owing():
        print_banner()
    
        //print details
        print("name:	" + name)
        print("amount	" + get_outstanding())
    

    def print_owing():
        print_banner()
        print_details(get_outstanding())
    
    def print_details(amount):
        print("name:	" + name)
        print("amount	" + amount)
    

    💡 Some IDEs have built in support for basic refactorings such as automatically renaming a variable/method/class in all places it has been used.

    Refactoring, even if done with the aid of an IDE, may still result in regressions. Therefore, each small refactoring should be followed by regression testing.

    Choose the correct statements

    • a. Refactoring can improve understandability
    • b. Refactoring can uncover bugs
    • c. Refactoring can result in better performance
    • d. Refactoring can change the number of methods/classes

    a, b, c, d

    Explanation:

    • (a, b, c) Although the primary aim of refactoring is to improve internal code structure, there are other secondary benefits.
    • (d) Some refactorings result in adding/removing methods/classes.

    Do you agree with the following statement? Justify your answer.

    Statement: Whenever we refactor code to fix bugs, we need not do regression testing if the bug fix was minor.

    There are two flaws in the given statement.

    DISAGREE.

    1. Even a minor change can have major repercussions on the system. We MUST do regression testing after each change, no matter how minor it is.
    2. Fixing bugs is technically not refactoring.

    Explain what is refactoring and why it is not the same as rewriting, bug fixing, or adding features.

    [W3.2b] Tools → Intellij IDEA → Refactoring

    Can use automated refactoring features of the IDE

    This video explains how to automate the 'Extract parameter' refactoring using Intellij IDEA. Most other refactorings available works similarly. i.e. select the code to refactorfind the refactoring in the context menu or use the keyboard shortcut.

    Here's another video explaining how to change a method signature as part of refactoring.

    [W3.2c] Implementation → Refactoring → How

    Can apply some basic refactoring

    Given below are some more commonly used refactorings. A more comprehensive list is available at refactoring-catalog .

    1. Consolidate Conditional Expression
    2. Decompose Conditional
    3. Inline Method
    4. Remove Double Negative
    5. Replace Magic Number with Symbolic Constant
    6. Replace Nested Conditional with Guard Clauses
    7. Replace Parameter with Explicit Methods
    8. Reverse Conditional
    9. Split Loop
    10. Split Temporary Variable
    [W3.2d] Implementation → Refactoring → When

    Can decide when to apply a given refactoring

    We know that it is important to refactor frequently so as to avoid the accumulation of ‘messy’ code which might get out of control. But how much refactoring is too much refactoring? It is too much refactoring when the benefits no longer justify the cost. The costs and the benefits depend on the context. That is why some refactorings are ‘opposites’ of each other (e.g. extract method vs inline method).

    ‘Extract method’ and ‘Inline method’ refactorings

    a

    [W3.3] C++ to Java

    [W3.3a] C++ to Java → The Java World → What is Java?

    Can explain what Java is

    Java was conceived by James Gosling and his team at Sun Microsystems in 1991.

    Java is directly related to both C and C++. Java inherits its syntax from C. Its object model is adapted from C++. --Java: A Beginner’s Guide, by Oracle

    Fun fact: The language was initially called Oak after an oak tree that stood outside Gosling's office. Later the project went by the name Green and was finally renamed Java, from Java coffee. --Wikipedia

    Oracle became the owner of Java in 2010, when it acquired Sun Microsystems.

    Java has remained the most popular language in the world for several years now (as at July 2018), according to the TIOBE index.

    [W3.3b] C++ to Java → The Java World → How Java Works

    Can explain how Java works at a higher-level

    Java is both compiled and interpreted. Instead of translating programs directly into machine language, the Java compiler generates byte code. Byte code is portable, so it is possible to compile a Java program on one machine, transfer the byte code to another machine, and run the byte code on the other machine. That’s why Java is considered a platform independent technology, aka WORA (Write Once Run Anywhere). The interpreter that runs byte code is called a “Java Virtual Machine” (JVM).

    Java technology is both a programming language and a platform. The Java programming language is a high-level object-oriented language that has a particular syntax and style. A Java platform is a particular environment in which Java programming language applications run. --Oracle

    [W3.3c] C++ to Java → The Java World → Java Editions

    Can explain Java editions

    According to the Official Java documentation, there are four platforms of the Java programming language:

    • Java Platform, Standard Edition (Java SE): Contains the core functionality of the Java programming language.

    • Java Platform, Enterprise Edition (Java EE): For developing and running large-scale enterprise applications. Built on top of Java SE.

    • Java Platform, Micro Edition (Java ME): For Java programming language applications meant for small devices, like mobile phones. A subset of Java SE.

    • JavaFX: For creating applications with graphical user interfaces. Can work with the other three above.

    This book chapter uses the Java SE edition unless stated otherwise.

    [W3.4] Java classes


    Classes

    [W3.4a] C++ to Java → Classes → Defining Classes :

    Can define Java classes

    As you know,

    • Defining a class creates a new object type with the same name.
    • Every object belongs to some object type; that is, it is an instance of some class.
    • A class definition is like a template for objects: it specifies what attributes the objects have and what methods can operate on them.
    • The new operator instantiates objects, that is, it creates new instances of a class.
    • The methods that operate on an object type are defined in the class for that object.

    Here's a class called Time, intended to represent a moment in time. It has three attributes and no methods.

    public class Time {
        private int hour;
        private int minute;
        private int second;
    }
    

    You can give a class any name you like. The Java convention is to use PascalCase format for class names.

    The code should be in a file whose name matches the class e.g., the Time class should be in a file named Time.java.

    When a class is public (e.g., the Time class in the above example) it can be used in other classes. But the instance variables that are private (e.g., the hour, minute and second attributes of the Time class) can only be accessed from inside the Time class.

    Constructos

    The syntax for constructors is similar to that of other methods, except:

    • The name of the constructor is the same as the name of the class.
    • The keyword static is omitted.
    • Do not return anything. A constructor returns the created object by default.

    When you invoke new, Java creates the object and calls your constructor to initialize the instance variables. When the constructor is done, new returns a reference to the new object.

    Here is an example constructor for the Time class:

    public Time() {
        hour = 0;
        minute = 0;
        second = 0;
    }
    

    This constructor does not take any arguments. Each line initializes an instance variable to zero (which in this example means midnight). Now you can create Time objects.

    Time time = new Time();

    Like other methods, constructors can be overloaded, which means you can provide multiple constructors with different parameters.

    You can add another constructor to the Time class to allow creating Time objects that are initialized to a specific time:

    public Time(int h, int m, int s) {
        hour = h;
        minute = m;
        second = s;
    }
    

    Here's how you can invoke the new constructor:

    Time justBeforeMidnight = new Time(11, 59, 59);
    
    this keyword

    The this keyword is a reference variable in Java that refers to the current object. You can use this the same way you use the name of any other object. For example, you can read and write the instance variables of this, and you can pass this as an argument to other methods. But you do not declare this, and you can’t make an assignment to it.

    In the following version of the constructor, the names and types of the parameters are the same as the instance variables (parameters don’t have to use the same names, but that’s a common style). As a result, the parameters shadow (or hide) the instance variables, so the keyword this is necessary to tell them apart.

    public Time(int hour, int minute, int second) {
        this.hour = hour;
        this.minute = minute;
        this.second = second;
    }
    

    this can be used to refer to a constructor of a class within the same class too.

    In this example the constructor Time() uses the this keyword to call its own overloaded constructor Time(int, int, int)

    public Time() {
        this(0, 0, 0); // call the overloaded constructor
    }
    
    public Time(int hour, int minute, int second) {
        // ...
    }
    
    
    Instance methods

    You can add methods to a class which can then be used from the objects of that class. These instance methods do not have the static keyword in the method signature. Instance methods can access attributes of the class.

    Here's how you can add a method to the Time class to get the number of seconds passed till midnight.

    public int secondsSinceMidnight() {
        return hour*60*60 + minute*60 + second;
    }
    

    Here's how you can use that method.

    Time t = new Time(0, 2, 5);
    System.out.println(t.secondsSinceMidnight() + " seconds since midnight!");
    

    Define a Circle class so that the code given below produces the given output. The nature of the class is a follows:

    • Attributes(all private):
      • int x, int y: represents the location of the circle
      • double radius: the radius of the circle
    • Constructors:
      • Circle(): initializes x, y, radius to 0
      • Circle(int x, int y, double radius): initializes the attributes to the given values
    • Methods:
      • getArea(): int
        Returns the area of the circle as an int value (not double). Calculated as 2xPIx(radius)2
        💡 You can convert to double to an int using (int) e.g., x = (int)2.25 gives x the value 2.
        💡 You can use Math.PI to get the value of Pi
        💡 You can use Math.pow() to raise a number to a specific power e.g., Math.pow(3, 2) calculates 32
    public class Main {
        public static void main(String[] args) {
            Circle c = new Circle();
    
            System.out.println(c.getArea());
            c = new Circle(1, 2, 5);
            System.out.println(c.getArea());
    
        }
    }
    

    0
    78
    
    • Put the Circle class in a file called Circle.java

    Partial solution:

    public class Circle {
        private int x;
        // ...
    
        public Circle(){
            this(0, 0, 0);
        }
    
        public Circle(int x, int y, double radius){
            this.x = x;
            // ...
        }
    
        public int getArea(){
            double area = Math.PI * Math.pow(radius, 2);
            return (int)area;
        }
    
    }
    
    [W3.4b] C++ to Java → Classes → Getters and setters :

    Can define getters and setters

    As the instance variables of Time are private, you can access them from within the Time class only. To compensate, you can provide methods to access attributes:

    public int getHour() {
        return hour;
    }
    
    public int getMinute() {
        return minute;
    }
    
    public int getSecond() {
        return second;
    }
    

    Methods like these are formally called “accessors”, but more commonly referred to as getters. By convention, the method that gets a variable named something is called getSomething.

    Similarly, you can provide setter methods to modify attributes of a Time object:

    public void setHour(int hour) {
        this.hour = hour;
    }
    
    public void setMinute(int minute) {
        this.minute = minute;
    }
    
    public void setSecond(int second) {
        this.second = second;
    }
    

    Consider the Circle class below:

    public class Circle {
        private int x;
        private int y;
        private double radius;
    
        public Circle(){
            this(0, 0, 0);
        }
    
        public Circle(int x, int y, double radius){
            this.x = x;
            this.y = y;
            this.radius = radius;
        }
    
        public int getArea(){
            double area = Math.PI * Math.pow(radius, 2);
            return (int)area;
        }
    
    }
    

    Update it as follows so that code given below produces the given output.

    • Add getter/setter methods for all three attributes
    • Update the setters and constructors such that if the radius supplied is negative, the code automatically set the radius to 0 instead.
    public class Main {
        public static void main(String[] args) {
            Circle c = new Circle(1,2, 5);
    
            c.setX(4);
            c.setY(5);
            c.setRadius(6);
            System.out.println("x      : " + c.getX());
            System.out.println("y      : " + c.getY());
            System.out.println("radius : " + c.getRadius());
            System.out.println("area   : " + c.getArea());
    
            c.setRadius(-5);
            System.out.println("radius : " + c.getRadius());
            c = new Circle(1, 1, -4);
            System.out.println("radius : " + c.getRadius());
    
        }
    }
    

    x      : 4
    y      : 5
    radius : 6.0
    area   : 113
    radius : 0.0
    radius : 0.0
    

    Partial solution:

    public Circle(int x, int y, double radius){
        setX(x);
        setY(y);
        setRadius(radius);
    }
    
    public void setRadius(double radius) {
        this.radius = Math.max(radius, 0);
    }
    

    Class-level members

    [W3.4c] Paradigms → Object Oriented Programming → Classes → Class-Level Members :

    Can explain class-level members

    While all objects of a class has the same attributes, each object has its own copy of the attribute value.

    All Person objects have the Name attribute but the value of that attribute varies between Person objects.

    However, some attributes are not suitable to be maintained by individual objects. Instead, they should be maintained centrally, shared by all objects of the class. They are like ‘global variables’ but attached to a specific class. Such variables whose value is shared by all instances of a class are called class-level attributes.

    The attribute totalPersons should be maintained centrally and shared by all Person objects rather than copied at each Person object.

    Similarly, when a normal method is being called, a message is being sent to the receiving object and the result may depend on the receiving object.

    Sending the getName() message to Adam object results in the response "Adam" while sending the same message to the Beth object gets the response "Beth".

    However, there can be methods related to a specific class but not suitable for sending message to a specific object of that class. Such methods that are called using the class instead of a specific instance are called class-level methods.

    The method getTotalPersons() is not suitable to send to a specific Person object because a specific object of the Person class should not know about the total number of Person objects.

    Class-level attributes and methods are collectively called class-level members (also called static members sometimes because some programming languages use the keyword static to identify class-level members). They are to be accessed using the class name rather than an instance of the class.

    Which of these are suitable as class-level variables?

    • a. system: multi-player Pac Man game, Class: Player, variable: totalScore
    • b. system: eLearning system, class: Course, variable: totalStudents
    • c. system: ToDo manager, class: Task, variable: totalPendingTasks
    • d. system: any, class: ArrayList, variable: total (i.e., total items in a given ArrayList object)

    (c)

    Explanation: totalPendingTasks should not be managed by individual Task objects and therefore suitable to be maintained as a class-level variable. The other variables should be managed at instance level as their value varies from instance to instance. e.g., totalStudents for one Course object will differ from totalStudents of another.

    [W3.4d] C++ to Java → Classes → Class-Level Members :

    Can use class-level members

    The content below is an extract from -- Java Tutorial, with slight adaptations.

    When a number of objects are created from the same class blueprint, they each have their own distinct copies of instance variables. In the case of a Bicycle class, the instance variables are gear, and speed. Each Bicycle object has its own values for these variables, stored in different memory locations.

    Sometimes, you want to have variables that are common to all objects. This is accomplished with the static modifier. Fields that have the static modifier in their declaration are called static fields or class variables. They are associated with the class, rather than with any object. Every instance of the class shares a class variable, which is in one fixed location in memory. Any object can change the value of a class variable, but class variables can also be manipulated without creating an instance of the class.

    Suppose you want to create a number of Bicycle objects and assign each a serial number, beginning with 1 for the first object. This ID number is unique to each object and is therefore an instance variable. At the same time, you need a field to keep track of how many Bicycle objects have been created so that you know what ID to assign to the next one. Such a field is not related to any individual object, but to the class as a whole. For this you need a class variable, numberOfBicycles, as follows:

    public class Bicycle {
    
        private int gear;
        private int speed;
    
        // an instance variable for the object ID
        private int id;
    
        // a class variable for the number of Bicycle objects instantiated
        private static int numberOfBicycles = 0;
            ...
    }
    

    Class variables are referenced by the class name itself, as in Bicycle.numberOfBicycles This makes it clear that they are class variables.

    The Java programming language supports static methods as well as static variables. Static methods, which have the static modifier in their declarations, should be invoked with the class name, without the need for creating an instance of the class, as in ClassName.methodName(args)

    The static modifier, in combination with the final modifier, is also used to define constants. The final modifier indicates that the value of this field cannot change.For example, the following variable declaration defines a constant named PI, whose value is an approximation of pi (the ratio of the circumference of a circle to its diameter): static final double PI = 3.141592653589793;

    Here is an example with class-level variables and class-level methods:

    public class Bicycle {
    
        private int gear;
        private int speed;
    
        private int id;
    
        private static int numberOfBicycles = 0;
    
    
        public Bicycle(int startSpeed, int startGear) {
            gear = startGear;
            speed = startSpeed;
    
            numberOfBicycles++;
            id = numberOfBicycles;
        }
    
        public int getID() {
            return id;
        }
    
        public static int getNumberOfBicycles() {
            return numberOfBicycles;
        }
    
        public int getGear(){
            return gear;
        }
    
        public void setGear(int newValue) {
            gear = newValue;
        }
    
        public int getSpeed() {
            return speed;
        }
    
        // ...
    
    }
    

    💡 Explanation of System.out.println(...):

    • out is a class-level public attribute of the System class.
    • println is a instance level method of the out object.

    Consider the Circle class below:

    public class Circle {
        private int x;
        private int y;
        private double radius;
    
        public Circle(){
            this(0, 0, 0);
        }
    
        public Circle(int x, int y, double radius){
            setX(x);
            setY(y);
            setRadius(radius);
        }
    
        public int getX() {
            return x;
        }
    
        public void setX(int x) {
            this.x = x;
        }
    
        public int getY() {
            return y;
        }
    
        public void setY(int y) {
            this.y = y;
        }
    
        public double getRadius() {
            return radius;
        }
    
        public void setRadius(double radius) {
            this.radius = Math.max(radius, 0);
        }
    
        public int getArea(){
            double area = Math.PI * Math.pow(radius, 2);
            return (int)area;
        }
    }
    

    Update it as follows so that code given below produces the given output.

    • Add a class-level getMaxRadius method that returns the maximum radius that has been used in all Circle objects created thus far.
    public class Main {
        public static void main(String[] args) {
            Circle c = new Circle();
            System.out.println("max radius used so far : " + Circle.getMaxRadius());
            c = new Circle(0, 0, 10);
            System.out.println("max radius used so far : " + Circle.getMaxRadius());
            c = new Circle(0, 0, -15);
            System.out.println("max radius used so far : " + Circle.getMaxRadius());
            c.setRadius(12);
            System.out.println("max radius used so far : " + Circle.getMaxRadius());
        }
    }
    

    max radius used so far : 0.0
    max radius used so far : 10.0
    max radius used so far : 10.0
    max radius used so far : 12.0
    

    You can use a static variable maxRadius to track the maximum value used for the radius attribute so far.

    Partial solution:

    public void setRadius(double radius) {
        this.radius = Math.max(radius, 0);
        if (maxRadius < this.radius){
            // ...
        }
    }
    

    [W3.5] Java varargs

    [W3.5a] Tools → Java → Varargs

    Project Preparation: 1 KLoC

    This task can earn you 2 participation marks.

     

    To receive full 10 marks allocated for participation, earn at least 15 participation points.

    There are 30+ available points to choose from:

    • Good peer ratings
      • Criteria for professional conduct (1 point for each criterion, max 7)
      • Competency criteria (2 points for each, max 6)

    Only those who submit peer evaluations can earn participation points from peer evaluations they receive.

    • In-lecture quizzes (1 each, max 10 points)
    • Enhanced AB1-AB3 (2 points for AB-1, 3 points each for AB-2 and AB-3)
    • Module admin tasks done on time and as instructed
      • Peer evaluations (1 points each)
      • Pre-module survey (1 points)

    If your response in the pre-module survey is not usable, you will not earn points for this exercise.

    Relevant: [Admin Peer Evaluations → Criteria ]

     

    Peer evaluation criteria: professional conduct

    • Professional Communication :
      • Communicates sufficiently and professionally. e.g. Does not use offensive language or excessive slang in project communications.
      • Responds to communication from team members in a timely manner (e.g. within 24 hours).
    • Punctuality: Does not cause others to waste time or slow down project progress by frequent tardiness.
    • Dependability: Promises what can be done, and delivers what was promised.
    • Effort: Puts in sufficient effort to, and tries their best to keep up with the module/project pace. Seeks help from others when necessary.
    • Quality: Does not deliver work products that seem to be below the student's competence level i.e. tries their best to make the work product as high quality as possible within her competency level.
    • Meticulousness:
      • Rarely overlooks submission requirements.
      • Rarely misses compulsory module activities such as pre-module survey.
    • Teamwork: How willing are you to act as part of a team, contribute to team-level tasks, adhere to team decisions, etc.

    Peer evaluation criteria: competency

    • Technical Competency: Able to gain competency in all the required tools and techniques.
    • Mentoring skills: Helps others when possible. Able to mentor others well.
    • Communication skills: Able to communicate (written and spoken) well. Takes initiative in discussions.

    Evidence:

    Do an enhancement to [AddressBook - Level1] e.g. add a new command

    • The size of the enhancement does not matter.
    • Step 1: Fork address AddressBook - Level1 to your GitHub account.
    • Step 2: Change the code in small steps and commit after each significant change. You may commit to the master branch.
      • Try to stay within the procedural (not OOP) style of the code base. Reason: in this LO, we try to stretch ourselves to the limits of the procedural approach.
      • Update all relevant tests. Ensure all tests pass.
      • [Optional] Update all relevant documentation.
      • [Optional] Try to follow our coding standard in your new code.
    • Step 3: push the updated AB1 code to your fork

    💡 Note that you can reuse the code you write here in your final project, if applicable.

    Submission: No special submission required. Our scripts will check your fork automatically.

    Project Milestone: Inception

    Decide on a overall project direction (user profile, problem addressed, societal impact, optimize or morph?).

    It is not too early to set an overall direction for your project.

    • Set up a weekly project meeting time/venue with your team members

      We recommend at least one face-to-face project meeting per week. The project meeting time can be used to discuss project related things, but also, can be used as a time for team members to work on the project tasks individually (having all members in the same place will facilitate easier collaboration and more peer-learning).

    • Play around with AB4

      Download the latest released version (i.e., the jar file) of AB4 from its upstream repo and play around with it to familiarize with its current features.

    • Decide project direction, target user profile, and problem addressed

      Use your first project meeting to discuss with your team members and decide your project direction, target user profile, and the value proposition of the product, as described in [Admin Project Scope]

     

    In general, each team is expected to take one of these two directions:

    • [Direction 1] Optimize AddressBook for a more specific target user group:

      An AddressBook,

      • for users in a specific profession  e.g. doctors, salesmen, teachers, etc.
      • based on the nature/scale of contacts  e.g. huge number of contacts (for HR admins, user group admins), mostly incomplete contacts, highly volatile contact details, contacts become inactive after a specific period (e.g. contract employees)
      • based on what users do with the contacts  e.g. organize group events, share info, do business, do analytics

    • [Direction 2] Morph AddressBook into a different product: Given that AddressBook is a generic app that manages a type of elements (i.e. contacts), you can use it as a starting point to create an app that manages something else.
      This is a high-risk high-reward option because morphing requires extra work but a morphed product may earn more marks than an optimized product of similar complexity.

      An app to manage,

      • Bookmarks of websites
      • Tasks/Schedule
      • Location info
      • Thing to memorize i.e. flash cards, trivia
      • Forum posts, news feeds, Social media feeds
      • Online projects or issue trackers that the user is interested in
      • Emails, possibly from different accounts
      • Multiple types of related things  e.g. Contacts and Tasks (if Tasks are allocated to Contacts)

    For either direction, you need to define a target user profile and a value proposition:

    • Target user profile: Define a very specific target user profile.
      💡 We require you to narrow down the target user profile  as opposed to trying to make it as general as possible. Here is an example direction of narrowing down target user: anybody → teachers → university teachers → tech savvy university teachers → CS2113/T instructors.

      Be careful not to contradict given project constraints when defining the user profile  e.g. the target user should still prefer typing over mouse actions.

      It is expected that your product will be optimized for the chosen target users i.e., add features that are especially/only applicable for target users (to make the app especially attractive to them). w.r.t. the example above, there can be features that are applicable to CS2113/T instructors only, such as the ability to navigate to a student's project on GitHub
      💡 Your project will be graded based on how well the features match the target user profile and how well the features fit-together.

      • It is an opportunity to exercise your product design skills because optimizing the product to a very specific target user requires good product design skills.
      • It minimizes the overlap between features of different teams which can cause plagiarism issues. Furthermore, higher the number of other teams having the same features, less impressive your work becomes especially if others have done a better job of implementing that feature.

    • Value proposition: Define a clear value proposition (what problem does the product solve? how does it make the the user's life easier?) that matches the target user profile.

    Simple Java exercises

    We will use repl.it platform for some simple Java coding exercises.
    The link to our classroom will be available under Links in the navigation bar.
    Note: you need to create an account on repl.it to be able to use the platform

    Team forming

    CS2113 students only: Form teams at the beginning of the tutorial. Be sure to conform to team forming constrains.

    All students:

    • Confirm your team ID with the tutor. It should be of the form TUTORIAL_ID-TEAM_NUMBER e.g. M11-1 (Mon 1100 slot, team 1)

    Tutorial activity

    Admin Project: Assessment

    Note that project grading is not competitive (not bell curved). CS2113T projects will be assessed separately from CS2113 projects. Given below is the marking scheme.

    Total: 50 marks ( 40 individual marks + 10 team marks)

    Evaluates: How well do your features fit together to form a cohesive product (not how many features or how big the features are)?

    Based on: user guide and the product demo. The quality of the demo will be factored in as well.

    💡 Feature that fit well with the other features will earn more marks.

    Evaluates:

    A. Code quality/quantity:

    How good your implementation is, in terms of the quality and the quantity of the code you have written yourself.

    Based on: an inspection of the parts of the code you claim as written by you.

    • Ensure your code has at least some evidence of these (see here for more info)

      • logging
      • exceptions
      • assertions
      • defensive coding
    • Ensure there are no coding standard violations  e.g. all boolean variables/methods sounds like booleans. Checkstyle can prevent only some coding standard violations; others need to be checked manually.

    • Ensure SLAP is applied at a reasonable level. Long methods or deeply-nested code are symptoms of low-SLAP may be counted against your code quality.

    • Reduce code duplications  i.e. if there multiple blocks of code that vary only in minor ways, try to extract out similarities into one place, especially in test code.

    • In addition, try to apply as many of the code quality guidelines covered in the module as much as you can.

     

    Code Quality

    Introduction

    Basic

    Can explain the importance of code quality

    Always code as if the person who ends up maintaining your code will be a violent psychopath who knows where you live. -- Martin Golding

    Production code needs to be of high quality . Given how the world is becoming increasingly dependent of software, poor quality code is something we cannot afford to tolerate.

    Code being used in an actual product with actual users

    Guideline: Maximise Readability

    Introduction

    Can explain the importance of readability

    Programs should be written and polished until they acquire publication quality. --Niklaus Wirth

    Among various dimensions of code quality, such as run-time efficiency, security, and robustness, one of the most important is understandability. This is because in any non-trivial software project, code needs to be read, understood, and modified by other developers later on. Even if we do not intend to pass the code to someone else, code quality is still important because we all become 'strangers' to our own code someday.

    The two code samples given below achieve the same functionality, but one is easier to read.

         

    Bad

    int subsidy() {
        int subsidy;
        if (!age) {
            if (!sub) {
                if (!notFullTime) {
                    subsidy = 500;
                } else {
                    subsidy = 250;
                }
            } else {
                subsidy = 250;
            }
        } else {
            subsidy = -1;
        }
        return subsidy;
    }
    

      

    Good

    int calculateSubsidy() {
        int subsidy;
        if (isSenior) {
            subsidy = REJECT_SENIOR;
        } else if (isAlreadySubsidised) {
            subsidy = SUBSIDISED_SUBSIDY;
        } else if (isPartTime) {
            subsidy = FULLTIME_SUBSIDY * RATIO;
        } else {
            subsidy = FULLTIME_SUBSIDY;
        }
        return subsidy;
    }
    

         

    Bad

    def calculate_subs():
        if not age:
            if not sub:
                if not not_fulltime:
                    subsidy = 500
                else:
                    subsidy = 250
            else:
                subsidy = 250
        else:
            subsidy = -1
        return subsidy
    

      

    Good

    def calculate_subsidy():
        if is_senior:
            return REJECT_SENIOR
        elif is_already_subsidised:
            return SUBSIDISED_SUBSIDY
        elif is_parttime:
            return FULLTIME_SUBSIDY * RATIO
        else:
            return FULLTIME_SUBSIDY
    

    Basic

    Avoid Long Methods

    Can improve code quality using technique: avoid long methods

    Be wary when a method is longer than the computer screen, and take corrective action when it goes beyond 30 LOC (lines of code). The bigger the haystack, the harder it is to find a needle.

    Avoid Deep Nesting

    Can improve code quality using technique: avoid deep nesting

    If you need more than 3 levels of indentation, you're screwed anyway, and should fix your program. --Linux 1.3.53 CodingStyle

    In particular, avoid arrowhead style code.

    Example:

    Avoid Complicated Expressions

    Can improve code quality using technique: avoid complicated expressions

    Avoid complicated expressions, especially those having many negations and nested parentheses. If you must evaluate complicated expressions, have it done in steps (i.e. calculate some intermediate values first and use them to calculate the final value).

    Example:

    Bad

    return ((length < MAX_LENGTH) || (previousSize != length)) && (typeCode == URGENT);
    

    Good

    
    boolean isWithinSizeLimit = length < MAX_LENGTH;
    boolean isSameSize = previousSize != length;
    boolean isValidCode = isWithinSizeLimit || isSameSize;
    
    boolean isUrgent = typeCode == URGENT;
    
    return isValidCode && isUrgent;
    

    Example:

    Bad

    return ((length < MAX_LENGTH) or (previous_size != length)) and (type_code == URGENT)
    

    Good

    is_within_size_limit = length < MAX_LENGTH
    is_same_size = previous_size != length
    is_valid_code = is_within_size_limit or is_same_size
    
    is_urgent = type_code == URGENT
    
    return is_valid_code and is_urgent
    

    The competent programmer is fully aware of the strictly limited size of his own skull; therefore he approaches the programming task in full humility, and among other things he avoids clever tricks like the plague. -- Edsger Dijkstra

    Avoid Magic Numbers

    Can improve code quality using technique: avoid magic numbers

    When the code has a number that does not explain the meaning of the number, we call that a magic number (as in “the number appears as if by magic”). Using a named constant makes the code easier to understand because the name tells us more about the meaning of the number.

    Example:

         

    Bad

    return 3.14236;
    ...
    return 9;
    

      

    Good

    static final double PI = 3.14236;
    static final int MAX_SIZE = 10;
    ...
    return PI;
    ...
    return MAX_SIZE-1;
    

    Note: Python does not have a way to make a variable a constant. However, you can use a normal variable with an ALL_CAPS name to simulate a constant.

         

    Bad

    return 3.14236
    ...
    return 9
    

      

    Good

    PI = 3.14236
    MAX_SIZE = 10
    ...
    return PI
    ...
    return MAX_SIZE-1
    

    Similarly, we can have ‘magic’ values of other data types.

    Bad

    "Error 1432"  // A magic string!
    

    Make the Code Obvious

    Can improve code quality using technique: make the code obvious

    Make the code as explicit as possible, even if the language syntax allows them to be implicit. Here are some examples:

    • [Java] Use explicit type conversion instead of implicit type conversion.
    • [Java, Python] Use parentheses/braces to show grouping even when they can be skipped.
    • [Java, Python] Use enumerations when a certain variable can take only a small number of finite values. For example, instead of declaring the variable 'state' as an integer and using values 0,1,2 to denote the states 'starting', 'enabled', and 'disabled' respectively, declare 'state' as type SystemState and define an enumeration SystemState that has values 'STARTING', 'ENABLED', and 'DISABLED'.

    Intermediate

    Structure Code Logically

    Can improve code quality using technique: structure code logically

    Lay out the code so that it adheres to the logical structure. The code should read like a story. Just like we use section breaks, chapters and paragraphs to organize a story, use classes, methods, indentation and line spacing in your code to group related segments of the code. For example, you can use blank lines to group related statements together. Sometimes, the correctness of your code does not depend on the order in which you perform certain intermediary steps. Nevertheless, this order may affect the clarity of the story you are trying to tell. Choose the order that makes the story most readable.

    Do Not 'Trip Up' Reader

    Can improve code quality using technique: do not 'trip up' reader

    Avoid things that would make the reader go ‘huh?’, such as,

    • unused parameters in the method signature
    • similar things look different
    • different things that look similar
    • multiple statements in the same line
    • data flow anomalies such as, pre-assigning values to variables and modifying it without any use of the pre-assigned value

    Practice KISSing

    Can improve code quality using technique: practice kissing

    As the old adage goes, "keep it simple, stupid” (KISS). Do not try to write ‘clever’ code. For example, do not dismiss the brute-force yet simple solution in favor of a complicated one because of some ‘supposed benefits’ such as 'better reusability' unless you have a strong justification.

    Debugging is twice as hard as writing the code in the first place. Therefore, if you write the code as cleverly as possible, you are, by definition, not smart enough to debug it. --Brian W. Kernighan

    Programs must be written for people to read, and only incidentally for machines to execute. --Abelson and Sussman

    Avoid Premature Optimizations

    Can improve code quality using technique: avoid premature optimizations

    Optimizing code prematurely has several drawbacks:

    • We may not know which parts are the real performance bottlenecks. This is especially the case when the code undergoes transformations (e.g. compiling, minifying, transpiling, etc.) before it becomes an executable. Ideally, you should use a profiler tool to identify the actual bottlenecks of the code first, and optimize only those parts.
    • Optimizing can complicate the code, affecting correctness and understandability
    • Hand-optimized code can be harder for the compiler to optimize (the simpler the code, the easier for the compiler to optimize it). In many cases a compiler can do a better job of optimizing the runtime code if you don't get in the way by trying to hand-optimize the source code.

    A popular saying in the industry is make it work, make it right, make it fast which means in most cases getting the code to perform correctly should take priority over optimizing it. If the code doesn't work correctly, it has no value on matter how fast/efficient it it.

    Premature optimization is the root of all evil in programming. --Donald Knuth

    Note that there are cases where optimizing takes priority over other things e.g. when writing code for resource-constrained environments. This guideline simply a caution that you should optimize only when it is really needed.

    SLAP Hard

    Can improve code quality using technique: SLAP hard

    Avoid varying the level of abstraction within a code fragment. Note: The Productive Programmer (by Neal Ford) calls this the SLAP principle i.e. Single Level of Abstraction Per method.

    Example:

    Bad

    readData();
    salary = basic*rise+1000;
    tax = (taxable?salary*0.07:0);
    displayResult();
    

    Good

    readData();
    processData();
    displayResult();
    
     

    Design → Design Fundamentals → Abstraction →

    What

    Abstraction is a technique for dealing with complexity. It works by establishing a level of complexity we are interested in, and suppressing the more complex details below that level.

    The guiding principle of abstraction is that only details that are relevant to the current perspective or the task at hand needs to be considered. As most programs are written to solve complex problems involving large amounts of intricate details, it is impossible to deal with all these details at the same time. That is where abstraction can help.

    Ignoring lower level data items and thinking in terms of bigger entities is called data abstraction.

    Within a certain software component, we might deal with a user data type, while ignoring the details contained in the user data item such as name, and date of birth. These details have been ‘abstracted away’ as they do not affect the task of that software component.

    Control abstraction abstracts away details of the actual control flow to focus on tasks at a simplified level.

    print(“Hello”) is an abstraction of the actual output mechanism within the computer.

    Abstraction can be applied repeatedly to obtain progressively higher levels of abstractions.

    An example of different levels of data abstraction: a File is a data item that is at a higher level than an array and an array is at a higher level than a bit.

    An example of different levels of control abstraction: execute(Game) is at a higher level than print(Char) which is at a higher than an Assembly language instruction MOV.

    Abstraction is a general concept that is not limited to just data or control abstractions.

    Some more general examples of abstraction:

    • An OOP class is an abstraction over related data and behaviors.
    • An architecture is a higher-level abstraction of the design of a software.
    • Models (e.g., UML models) are abstractions of some aspect of reality.

    Advanced

    Make the Happy Path Prominent

    Can improve code quality using technique: make the happy path prominent

    The happy path (i.e. the execution path taken when everything goes well) should be clear and prominent in your code. Restructure the code to make the happy path unindented as much as possible. It is the ‘unusual’ cases that should be indented. Someone reading the code should not get distracted by alternative paths taken when error conditions happen. One technique that could help in this regard is the use of guard clauses.

    Example:

    Bad

    if (!isUnusualCase) {  //detecting an unusual condition
        if (!isErrorCase) {
            start();    //main path
            process();
            cleanup();
            exit();
        } else {
            handleError();
        }
    } else {
        handleUnusualCase(); //handling that unusual condition
    }
    

    In the code above,

    • Unusual condition detection is separated from their handling.
    • Main path is nested deeply.

    Good

    if (isUnusualCase) { //Guard Clause
        handleUnusualCase();
        return;
    }
    
    if (isErrorCase) { //Guard Clause
        handleError();
        return;
    }
    
    start();
    process();
    cleanup();
    exit();
    

    In contrast, the above code

    • deals with unusual conditions as soon as they are detected so that the reader doesn't have to remember them for long.
    • keeps the main path un-indented.

    Guideline: Follow a Standard

    Introduction

    Can explain the need for following a standard

    One essential way to improve code quality is to follow a consistent style. That is why software engineers follow a strict coding standard (aka style guide).

    The aim of a coding standard is to make the entire code base look like it was written by one person. A coding standard is usually specific to a programming language and specifies guidelines such as the location of opening and closing braces, indentation styles and naming styles (e.g. whether to use Hungarian style, Pascal casing, Camel casing, etc.). It is important that the whole team/company use the same coding standard and that standard is not generally inconsistent with typical industry practices. If a company's coding standards is very different from what is used typically in the industry, new recruits will take longer to get used to the company's coding style.

    💡 IDEs can help to enforce some parts of a coding standard e.g. indentation rules.

    What is the recommended approach regarding coding standards?

    c

    What is the aim of using a coding standard? How does it help?

    Basic

    Can follow simple mechanical style rules

    Learn basic guidelines of the Java coding standard (by OSS-Generic)

    Consider the code given below:

    import java.util.*;
    
    public class Task {
        public static final String descriptionPrefix = "description: ";
        private String description;
        private boolean important;
        List<String> pastDescription = new ArrayList<>(); // a list of past descriptions
    
        public Task(String d) {
          this.description = d;
          if (!d.isEmpty())
              this.important = true;
        }
    
        public String getAsXML() { return "<task>"+description+"</task>"; }
    
        /**
         * Print the description as a string.
         */
        public void printingDescription(){ System.out.println(this); }
    
        @Override
        public String toString() { return descriptionPrefix + description; }
    }
    

    In what ways the code violate the basic guidelines (i.e., those marked with one ⭐️) of the OSS-Generic Java Coding Standard given here?

    Here are three:

    • descriptionPrefix is a constant and should be named DESCRIPTION_PREFIX
    • method name printingDescription() should be named as printDescription()
    • boolean variable important should be named to sound boolean e.g., isImportant

    There are many more.

    Intermediate

    Can follow intermediate style rules

    Go through the provided Java coding standard and learn the intermediate style rules.

    According to the given Java coding standard, which one of these is not a good name?

    b

    Explanation: checkWeight is an action. Naming variables as actions makes the code harder to follow. isWeightValid may be a better name.

    Repeat the exercise in the panel below but also find violations of intermediate level guidelines.

    Consider the code given below:

    import java.util.*;
    
    public class Task {
        public static final String descriptionPrefix = "description: ";
        private String description;
        private boolean important;
        List<String> pastDescription = new ArrayList<>(); // a list of past descriptions
    
        public Task(String d) {
          this.description = d;
          if (!d.isEmpty())
              this.important = true;
        }
    
        public String getAsXML() { return "<task>"+description+"</task>"; }
    
        /**
         * Print the description as a string.
         */
        public void printingDescription(){ System.out.println(this); }
    
        @Override
        public String toString() { return descriptionPrefix + description; }
    }
    

    In what ways the code violate the basic guidelines (i.e., those marked with one ⭐️) of the OSS-Generic Java Coding Standard given here?

    Here are three:

    • descriptionPrefix is a constant and should be named DESCRIPTION_PREFIX
    • method name printingDescription() should be named as printDescription()
    • boolean variable important should be named to sound boolean e.g., isImportant

    There are many more.

    Here's one you are more likely to miss:

    • * Print the description as a string.* Prints the description as a string.

    There are more.

    Guideline: Name Well

    Introduction

    Can explain the need for good names in code

    Proper naming improves the readability. It also reduces bugs caused by ambiguities regarding the intent of a variable or a method.

    There are only two hard things in Computer Science: cache invalidation and naming things. -- Phil Karlton

    Basic

    Use Nouns for Things and Verbs for Actions

    Can improve code quality using technique: use nouns for things and verbs for actions

    Every system is built from a domain-specific language designed by the programmers to describe that system. Functions are the verbs of that language, and classes are the nouns. ― Robert C. Martin, Clean Code: A Handbook of Agile Software Craftsmanship

    Use nouns for classes/variables and verbs for methods/functions.

    Examples:

    Name for a Bad Good
    Class CheckLimit LimitChecker
    method result() calculate()

    Distinguish clearly between single-valued and multivalued variables.

    Examples:

    Good

    Person student;
    ArrayList<Person> students;
    

    Good

    student = Person('Jim')
    students = [Person('Jim'), Person('Alice')]
    

    Use Standard Words

    Can improve code quality using technique: use standard words

    Use correct spelling in names. Avoid 'texting-style' spelling. Avoid foreign language words, slang, and names that are only meaningful within specific contexts/times e.g. terms from private jokes, a TV show currently popular in your country

    Intermediate

    Use Name to Explain

    Can improve code quality using technique: use name to explain

    A name is not just for differentiation; it should explain the named entity to the reader accurately and at a sufficient level of detail.

    Examples:

    Bad Good
    processInput() (what 'process'?) removeWhiteSpaceFromInput()
    flag isValidInput
    temp

    If the name has multiple words, they should be in a sensible order.

    Examples:

    Bad Good
    bySizeOrder() orderBySize()

    Imagine going to the doctor's and saying "My eye1 is swollen"! Don’t use numbers or case to distinguish names.

    Examples:

    Bad Bad Good
    value1, value2 value, Value originalValue, finalValue

    Not Too Long, Not Too Short

    Can improve code quality using technique: not too long, not too short

    While it is preferable not to have lengthy names, names that are 'too short' are even worse. If you must abbreviate or use acronyms, do it consistently. Explain their full meaning at an obvious location.

    Avoid Misleading Names

    Can improve code quality using technique: avoid misleading names

    Related things should be named similarly, while unrelated things should NOT.

    Example: Consider these variables

    • colorBlack : hex value for color black
    • colorWhite : hex value for color white
    • colorBlue : number of times blue is used
    • hexForRed : : hex value for color red

    This is misleading because colorBlue is named similar to colorWhite and colorBlack but has a different purpose while hexForRed is named differently but has very similar purpose to the first two variables. The following is better:

    • hexForBlack hexForWhite hexForRed
    • blueColorCount

    Avoid misleading or ambiguous names (e.g. those with multiple meanings), similar sounding names, hard-to-pronounce ones (e.g. avoid ambiguities like "is that a lowercase L, capital I or number 1?", or "is that number 0 or letter O?"), almost similar names.

    Examples:

    Bad Good Reason
    phase0 phaseZero Is that zero or letter O?
    rwrLgtDirn rowerLegitDirection Hard to pronounce
    right left wrong rightDirection leftDirection wrongResponse right is for 'correct' or 'opposite of 'left'?
    redBooks readBooks redColorBooks booksRead red and read (past tense) sounds the same
    FiletMignon egg If the requirement is just a name of a food, egg is a much easier to type/say choice than FiletMignon

    Guideline: Avoid Unsafe Shortcuts

    Introduction

    Can explain the need for avoiding error-prone shortcuts

    It is safer to use language constructs in the way they are meant to be used, even if the language allows shortcuts. Some such coding practices are common sources of bugs. Know them and avoid them.

    Basic

    Use the Default Branch

    Can improve code quality using technique: use the default branch

    Always include a default branch in case statements.

    Furthermore, use it for the intended default action and not just to execute the last option. If there is no default action, you can use the 'default' branch to detect errors (i.e. if execution reached the default branch, throw an exception). This also applies to the final else of an if-else construct. That is, the final else should mean 'everything else', and not the final option. Do not use else when an if condition can be explicitly specified, unless there is absolutely no other possibility.

    Bad

    if (red) print "red";
    else print "blue";
    

    Good

    if (red) print "red";
    else if (blue) print "blue";
    else error("incorrect input");
    

    Don't Recycle Variables or Parameters

    Can improve code quality using technique: don't recycle variables or parameters

    • Use one variable for one purpose. Do not reuse a variable for a different purpose other than its intended one, just because the data type is the same.
    • Do not reuse formal parameters as local variables inside the method.

    Bad

    double computeRectangleArea(double length, double width) {
        length = length * width;
        return length;
    }
    
    

    Good

    double computeRectangleArea(double length, double width) {
        double area;
        area = length * width;
        return area;
    }
    

    Avoid Empty Catch Blocks

    Can improve code quality using technique: avoid empty catch blocks

    Never write an empty catch statement. At least give a comment to explain why the catch block is left empty.

    Delete Dead Code

    Can improve code quality using technique: delete dead code

    We all feel reluctant to delete code we have painstakingly written, even if we have no use for that code any more ("I spent a lot of time writing that code; what if we need it again?"). Consider all code as baggage you have to carry; get rid of unused code the moment it becomes redundant. If you need that code again, simply recover it from the revision control tool you are using. Deleting code you wrote previously is a sign that you are improving.

    Intermediate

    Minimise Scope of Variables

    Can improve code quality using technique: minimise scope of variables

    Minimize global variables. Global variables may be the most convenient way to pass information around, but they do create implicit links between code segments that use the global variable. Avoid them as much as possible.

    Define variables in the least possible scope. For example, if the variable is used only within the if block of the conditional statement, it should be declared inside that if block.

    The most powerful technique for minimizing the scope of a local variable is to declare it where it is first used. -- Effective Java, by Joshua Bloch

    Resources:

    Minimise Code Duplication

    Can improve code quality using technique: minimise code duplication

    Code duplication, especially when you copy-paste-modify code, often indicates a poor quality implementation. While it may not be possible to have zero duplication, always think twice before duplicating code; most often there is a better alternative.

    This guideline is closely related to the DRY Principle.

    Supplmentary → Principles →

    DRY Principle

    DRY (Don't Repeat Yourself) Principle: Every piece of knowledge must have a single, unambiguous, authoritative representation within a system The Pragmatic Programmer, by Andy Hunt and Dave Thomas

    This principle guards against duplication of information.

    The functionality implemented twice is a violation of the DRY principle even if the two implementations are different.

    The value a system-wide timeout being defined in multiple places is a violation of DRY.

    Guideline: Comment Minimally, but Sufficiently

    Introduction

    Can explain the need for commenting minimally but sufficiently

    Good code is its own best documentation. As you’re about to add a comment, ask yourself, ‘How can I improve the code so that this comment isn’t needed?’ Improve the code and then document it to make it even clearer. --Steve McConnell, Author of Clean Code

    Some think commenting heavily increases the 'code quality'. This is not so. Avoid writing comments to explain bad code. Improve the code to make it self-explanatory.

    Basic

    Do Not Repeat the Obvious

    Can improve code quality using technique: do not repeat the obvious

    If the code is self-explanatory, refrain from repeating the description in a comment just for the sake of 'good documentation'.

    Bad

    // increment x
    x++;
    
    //trim the input
    trimInput();
    

    Write to the Reader

    Can improve code quality using technique: write to the reader

    Do not write comments as if they are private notes to self. Instead, write them well enough to be understood by another programmer. One type of comments that is almost always useful is the header comment that you write for a class or an operation to explain its purpose.

    Examples:

    Bad Reason: this comment will only make sense to the person who wrote it

    // a quick trim function used to fix bug I detected overnight
    void trimInput(){
        ....
    }
    

    Good

    /** Trims the input of leading and trailing spaces */
    void trimInput(){
        ....
    }
    

    Bad Reason: this comment will only make sense to the person who wrote it

    # a quick trim function used to fix bug I detected overnight
    def trim_input():
        ...
    

    Good

    def trim_input():
    """Trim the input of leading and trailing spaces"""
        ...
    

    Intermediate

    Explain WHAT and WHY, not HOW

    Can improve code quality using technique: explain what and why, not how

    Comments should explain what and why aspect of the code, rather than the how aspect.

    What : The specification of what the code supposed to do. The reader can compare such comments to the implementation to verify if the implementation is correct

    Example: This method is possibly buggy because the implementation does not seem to match the comment. In this case the comment could help the reader to detect the bug.

    /** Removes all spaces from the {@code input} */
    void compact(String input){
        input.trim();
    }
    

    Why : The rationale for the current implementation.

    Example: Without this comment, the reader will not know the reason for calling this method.

    // Remove spaces to comply with IE23.5 formatting rules
    compact(input);
    

    How : The explanation for how the code works. This should already be apparent from the code, if the code is self-explanatory. Adding comments to explain the same thing is redundant.

    Example:

    Bad Reason: Comment explains how the code works.

    // return true if both left end and right end are correct or the size has not incremented
    return (left && right) || (input.size() == size);
    

    Good Reason: Code refactored to be self-explanatory. Comment no longer needed.

    
    boolean isSameSize = (input.size() == size) ;
    return (isLeftEndCorrect && isRightEndCorrect) || isSameSize;
    

    B. Quality of your feature(s)

    Evaluates: How good is your Quality Assurance?

    Based on:

    1. bugs you found in the v1.4 Practical Exam
    2. bugs in your work found by others during the PE
    3. testability of your feature (you will lose marks if testers feel that your feature is hard to test manually)
    4. your test code (you will lose marks if you don't meet our expectations for automated testing)
    5. our own manual testing (when necessary)
     
    • There is no requirement for a minimum coverage level. Note that in a production environment you are often required to have at least 90% of the code covered by tests. In this project, it can be less. The less coverage you have, the higher the risk of regression bugs, which will cost marks if not fixed before the final submission.
    • You must write some tests so that we can evaluate your ability to write tests.
    • How much of each type of testing should you do? We expect you to decide. You learned different types of testing and what they try to achieve. Based on that, you should decide how much of each type is required. Similarly, you can decide to what extent you want to automate tests, depending on the benefits and the effort required.

    Evaluates: How good are the sections you wrote for the user guide and the developer guide?

    Based on: the relevant sections of your project portfolio. Criteria considered:

    • Explanation should be clear and written to match the audience.
    • Good use of visuals to complement text.
    • Use of correct UML notations (where applicable)

    A. Process:

    Evaluates: How well you did in project management related aspects of the project, as an individual and as a team

    Based on: Supervisor observations of project milestones and GitHub data.

    Milestones need to be reached the midnight before of the tutorial for it to be counted as achieved. To get a good grade for this aspect, achieve at least 60% of the recommended milestone progress.

    Other criteria:

    • Good use of GitHub milestones
    • Good use of GitHub release mechanism
    • Good version control, based on the repo
    • Reasonable attempt to use the forking workflow
    • Good task definition, assignment and tracking, based on the issue tracker
    • Good use of buffers (opposite: everything at the last minute)
    • Project done iteratively and incrementally (opposite: doing most of the work in one big burst)

    B. Team-tasks:

    Evaluates: How much did you contribute to team-tasks?

    Based on: peer evaluations and tutor observations

    Relevant: [Admin Project Scope → Examples of team-tasks ]

     

    Here is a non-exhaustive list of team-tasks:

    1. Necessary general code enhancements e.g.,
      1. Work related to renaming the product
      2. Work related to changing the product icon
      3. Morphing the product into a different product
    2. Setting up the GitHub, Travis, AppVeyor, etc.
    3. Maintaining the issue tracker
    4. Release management
    5. Updating user/developer docs that are not specific to a feature e.g. documenting the target user profile
    6. Incorporating more useful tools/libraries/frameworks into the product or the project workflow (e.g. automate more aspects of the project workflow using a GitHub plugin)

    Admin Appendix B (Policies) → Policy on following instructions

    Policy on following instructions

    When working with others, especially in a large class such as CS2113/T,  it is very important that you adhere to standards, policies, and instructions imposed on everyone. Not doing so creates unnecessary headaches for everyone and puts your work attitude in a negative light. That is why we penalize repeated violations of instructions. On the other hand we do understand that humans are liable to make mistakes. That is why we only penalize repeated or frequent mistakes.

    Admin Peer Evaluations

    We use the TEAMMATES online peer evaluation system to conduct several rounds of peer-evaluations. All peer evaluations will be taken into account when determining your participation marks. The system also allows you to give anonymous feedback to your teammates.

    Extra Requirements: [considered for participation marks]

    • Submitting peer evaluations is compulsory. If you routinely miss submitting peer evaluations, you can lose participation marks.
    • 💡 TEAMMATES normally allows students to access it without using Google login. In this module, we encourage (but not require) you to login to TEAMMATES using your Google account and complete your profile with a suitable profile photo. Reason: CS2113/T is a big class. This profile helps us to remember you better, even after the module is over.
     
    • The purpose of the profile photo is for the teaching team to identify you. Therefore, you should choose a recent individual photo showing your face clearly (i.e., not too small) -- somewhat similar to a passport photo. Some examples can be seen in the 'Teaching team' page. Given below are some examples of good and bad profile photos.

    • If you are uncomfortable posting your photo due to security reasons, you can post a lower resolution image so that it is hard for someone to misuse that image for fraudulent purposes. If you are concerned about privacy, you can request permission to omit your photo from the page by writing to prof.

    Peer evaluation criteria: professional conduct

    • Professional Communication :
      • Communicates sufficiently and professionally. e.g. Does not use offensive language or excessive slang in project communications.
      • Responds to communication from team members in a timely manner (e.g. within 24 hours).
    • Punctuality: Does not cause others to waste time or slow down project progress by frequent tardiness.
    • Dependability: Promises what can be done, and delivers what was promised.
    • Effort: Puts in sufficient effort to, and tries their best to keep up with the module/project pace. Seeks help from others when necessary.
    • Quality: Does not deliver work products that seem to be below the student's competence level i.e. tries their best to make the work product as high quality as possible within her competency level.
    • Meticulousness:
      • Rarely overlooks submission requirements.
      • Rarely misses compulsory module activities such as pre-module survey.
    • Teamwork: How willing are you to act as part of a team, contribute to team-level tasks, adhere to team decisions, etc.

    Peer evaluation criteria: competency

    • Technical Competency: Able to gain competency in all the required tools and techniques.
    • Mentoring skills: Helps others when possible. Able to mentor others well.
    • Communication skills: Able to communicate (written and spoken) well. Takes initiative in discussions.

    Giving constructive feedback to others is a valuable skill for software engineers. It is also an intended learning outcome of this module. Half-hearted/trivial feedback will not earn participation marks.

    Here are some things to keep in mind:

    • Assume you are giving feedback to a colleague, not a friend. Keep the tone of your feedback reasonably professional. Do not use offensive language or slang.
    • The feedback should be honest and consistent. Giving positive qualitative feedback (e.g. Thanks for all the hard work! and negative ratings (e.g. Equal share - 40%) to the same team member is not being honest.
    • State your expectations early. All too often students give positive/neutral feedback early (hoping that the team member will improve later) and trash the team member in the final evaluation (because the he/she did not improve as expected). However, this could be confusing to the recipient. It is better to give negative feedback early so that the team member gets a clear signal that he/she needs to improve.

    Admin Grade Breakdown

    Relevant: [Admin Participation Marks ]

     

    To receive full 10 marks allocated for participation, earn at least 15 participation points.

    There are 30+ available points to choose from:

    • Good peer ratings
      • Criteria for professional conduct (1 point for each criterion, max 7)
      • Competency criteria (2 points for each, max 6)

    Only those who submit peer evaluations can earn participation points from peer evaluations they receive.

    • In-lecture quizzes (1 each, max 10 points)
    • Enhanced AB1-AB3 (2 points for AB-1, 3 points each for AB-2 and AB-3)
    • Module admin tasks done on time and as instructed
      • Peer evaluations (1 points each)
      • Pre-module survey (1 points)

    If your response in the pre-module survey is not usable, you will not earn points for this exercise.

    Relevant: [Admin Peer Evaluations → Criteria ]

     

    Peer evaluation criteria: professional conduct

    • Professional Communication :
      • Communicates sufficiently and professionally. e.g. Does not use offensive language or excessive slang in project communications.
      • Responds to communication from team members in a timely manner (e.g. within 24 hours).
    • Punctuality: Does not cause others to waste time or slow down project progress by frequent tardiness.
    • Dependability: Promises what can be done, and delivers what was promised.
    • Effort: Puts in sufficient effort to, and tries their best to keep up with the module/project pace. Seeks help from others when necessary.
    • Quality: Does not deliver work products that seem to be below the student's competence level i.e. tries their best to make the work product as high quality as possible within her competency level.
    • Meticulousness:
      • Rarely overlooks submission requirements.
      • Rarely misses compulsory module activities such as pre-module survey.
    • Teamwork: How willing are you to act as part of a team, contribute to team-level tasks, adhere to team decisions, etc.

    Peer evaluation criteria: competency

    • Technical Competency: Able to gain competency in all the required tools and techniques.
    • Mentoring skills: Helps others when possible. Able to mentor others well.
    • Communication skills: Able to communicate (written and spoken) well. Takes initiative in discussions.

    Relevant: [Admin Exams ]

     

    There is no midterm.

    The final exam has two parts:

    • Part 1: MCQ questions (30 minutes, 25 marks)
    • Part 2: Essay questions (1 hour 30 min, 30 marks)

    Both papers will be given to you at the start but you need to answer Part 1 first (i.e. MCQ paper). It will be collected 1 hour after the exam start time (even if arrived late for the exam). You are free to start part 2 early if you finish Part 1 early.

    Final Exam: Part 1 (MCQ)

    Each MCQ question gives you a statement to evaluate.

    An example statement

    Testing is a Q&A activity

    Unless stated otherwise, the meaning of answer options are
    A: Agree. If the question has multiple statements, agree with all of them.
    B: Disagree. If the question has multiple statements, disagree with at least one of them
    C, D, E: Not used

    The exam paper has 50 questions. All questions carry equal marks.

    The weightage of the Part 1 of the final exam is 25 marks out of the total score of 100.

    Note that you have slightly more than ½ minute for each question, which means you need to go through the questions fairly quickly.

    Given the fast pace required by the paper, to be fair to all students, you will not be allowed to clarify doubts about questions (in Part 1) by talking to invigilators.

    • If a question is not clear, you can circle the question number in the question paper and write your doubt in the question paper, near that question.
    • If your doubt is justified (e.g. there is a typo in the question) or if many students found the question to be unclear, the examiner may decide to omit that question from grading.

    Questions in Part 1 are confidential. You are not allowed to reveal Part 1 content to anyone after the exam. All pages of the assessment paper are to be returned at the end of the exam.

    You will be given OCR forms (i.e., bubble sheets) to indicate your answers for Part 1. As each OCR form can accommodate only 50 answers, you will be given 2 OCR forms. Indicate your student number in both OCR forms.

    Some questions will use underlines or highlighting to draw your attention to a specific part of the question. That is because those parts are highly relevant to the answer and we don’t want you to miss the relevance of that part.

    Consider the statement below:

    Technique ABC can be used to generate more test cases.

    The word can is underlined because the decision you need to make is whether the ABC can or cannot be used to generate more test cases; the decision is not whether ABC can be used to generate more or better test cases.

    The exam paper is open-book: you may bring any printed or written materials to the exam in hard copy format. However, given the fast pace required by Part 1, you will not have time left to refer notes during that part of the exam.

    💡 Mark the OCR form as you go, rather than planning to transfer your answers to the OCR form near the end.  Reason: Given there are 100 questions, it will be hard to estimate how much time you need to mass-transfer all answers to OCR forms.

    💡 Write the answer in the exam paper as well when marking it in the OCR form.  Reason: It will reduce the chance of missing a question. Furthermore, in case you missed a question, it will help you correct the OCR form quickly.

    💡 We have tried to avoid deliberately misleading/tricky questions. If a question seems to take a very long time to figure out, you are probably over-thinking it.

    You will be given a practice exam paper to familiarize yourself with this slightly unusual exam format.

    Final Exam: Part 2 (Essay)

    Unlike in part 1, you can ask invigilators for clarifications if you found a question to be unclear in part 2.

    Yes, you may use pencils when answering part 2.

    The weightage of the Part 2 of the final exam is 15 marks out of the total score of 100.

    Resources

    Past exam papers will be uploaded on IVLE.

    Relevant: [Admin Project Assessment ]

     

    Note that project grading is not competitive (not bell curved). CS2113T projects will be assessed separately from CS2113 projects. Given below is the marking scheme.

    Total: 50 marks ( 40 individual marks + 10 team marks)

    Evaluates: How well do your features fit together to form a cohesive product (not how many features or how big the features are)?

    Based on: user guide and the product demo. The quality of the demo will be factored in as well.

    💡 Feature that fit well with the other features will earn more marks.

    Evaluates:

    A. Code quality/quantity:

    How good your implementation is, in terms of the quality and the quantity of the code you have written yourself.

    Based on: an inspection of the parts of the code you claim as written by you.

    • Ensure your code has at least some evidence of these (see here for more info)

      • logging
      • exceptions
      • assertions
      • defensive coding
    • Ensure there are no coding standard violations  e.g. all boolean variables/methods sounds like booleans. Checkstyle can prevent only some coding standard violations; others need to be checked manually.

    • Ensure SLAP is applied at a reasonable level. Long methods or deeply-nested code are symptoms of low-SLAP may be counted against your code quality.

    • Reduce code duplications  i.e. if there multiple blocks of code that vary only in minor ways, try to extract out similarities into one place, especially in test code.

    • In addition, try to apply as many of the code quality guidelines covered in the module as much as you can.

     

    Code Quality

    Introduction

    Basic

    Can explain the importance of code quality

    Always code as if the person who ends up maintaining your code will be a violent psychopath who knows where you live. -- Martin Golding

    Production code needs to be of high quality . Given how the world is becoming increasingly dependent of software, poor quality code is something we cannot afford to tolerate.

    Code being used in an actual product with actual users

    Guideline: Maximise Readability

    Introduction

    Can explain the importance of readability

    Programs should be written and polished until they acquire publication quality. --Niklaus Wirth

    Among various dimensions of code quality, such as run-time efficiency, security, and robustness, one of the most important is understandability. This is because in any non-trivial software project, code needs to be read, understood, and modified by other developers later on. Even if we do not intend to pass the code to someone else, code quality is still important because we all become 'strangers' to our own code someday.

    The two code samples given below achieve the same functionality, but one is easier to read.

         

    Bad

    int subsidy() {
        int subsidy;
        if (!age) {
            if (!sub) {
                if (!notFullTime) {
                    subsidy = 500;
                } else {
                    subsidy = 250;
                }
            } else {
                subsidy = 250;
            }
        } else {
            subsidy = -1;
        }
        return subsidy;
    }
    

      

    Good

    int calculateSubsidy() {
        int subsidy;
        if (isSenior) {
            subsidy = REJECT_SENIOR;
        } else if (isAlreadySubsidised) {
            subsidy = SUBSIDISED_SUBSIDY;
        } else if (isPartTime) {
            subsidy = FULLTIME_SUBSIDY * RATIO;
        } else {
            subsidy = FULLTIME_SUBSIDY;
        }
        return subsidy;
    }
    

         

    Bad

    def calculate_subs():
        if not age:
            if not sub:
                if not not_fulltime:
                    subsidy = 500
                else:
                    subsidy = 250
            else:
                subsidy = 250
        else:
            subsidy = -1
        return subsidy
    

      

    Good

    def calculate_subsidy():
        if is_senior:
            return REJECT_SENIOR
        elif is_already_subsidised:
            return SUBSIDISED_SUBSIDY
        elif is_parttime:
            return FULLTIME_SUBSIDY * RATIO
        else:
            return FULLTIME_SUBSIDY
    

    Basic

    Avoid Long Methods

    Can improve code quality using technique: avoid long methods

    Be wary when a method is longer than the computer screen, and take corrective action when it goes beyond 30 LOC (lines of code). The bigger the haystack, the harder it is to find a needle.

    Avoid Deep Nesting

    Can improve code quality using technique: avoid deep nesting

    If you need more than 3 levels of indentation, you're screwed anyway, and should fix your program. --Linux 1.3.53 CodingStyle

    In particular, avoid arrowhead style code.

    Example:

    Avoid Complicated Expressions

    Can improve code quality using technique: avoid complicated expressions

    Avoid complicated expressions, especially those having many negations and nested parentheses. If you must evaluate complicated expressions, have it done in steps (i.e. calculate some intermediate values first and use them to calculate the final value).

    Example:

    Bad

    return ((length < MAX_LENGTH) || (previousSize != length)) && (typeCode == URGENT);
    

    Good

    
    boolean isWithinSizeLimit = length < MAX_LENGTH;
    boolean isSameSize = previousSize != length;
    boolean isValidCode = isWithinSizeLimit || isSameSize;
    
    boolean isUrgent = typeCode == URGENT;
    
    return isValidCode && isUrgent;
    

    Example:

    Bad

    return ((length < MAX_LENGTH) or (previous_size != length)) and (type_code == URGENT)
    

    Good

    is_within_size_limit = length < MAX_LENGTH
    is_same_size = previous_size != length
    is_valid_code = is_within_size_limit or is_same_size
    
    is_urgent = type_code == URGENT
    
    return is_valid_code and is_urgent
    

    The competent programmer is fully aware of the strictly limited size of his own skull; therefore he approaches the programming task in full humility, and among other things he avoids clever tricks like the plague. -- Edsger Dijkstra

    Avoid Magic Numbers

    Can improve code quality using technique: avoid magic numbers

    When the code has a number that does not explain the meaning of the number, we call that a magic number (as in “the number appears as if by magic”). Using a named constant makes the code easier to understand because the name tells us more about the meaning of the number.

    Example:

         

    Bad

    return 3.14236;
    ...
    return 9;
    

      

    Good

    static final double PI = 3.14236;
    static final int MAX_SIZE = 10;
    ...
    return PI;
    ...
    return MAX_SIZE-1;
    

    Note: Python does not have a way to make a variable a constant. However, you can use a normal variable with an ALL_CAPS name to simulate a constant.

         

    Bad

    return 3.14236
    ...
    return 9
    

      

    Good

    PI = 3.14236
    MAX_SIZE = 10
    ...
    return PI
    ...
    return MAX_SIZE-1
    

    Similarly, we can have ‘magic’ values of other data types.

    Bad

    "Error 1432"  // A magic string!
    

    Make the Code Obvious

    Can improve code quality using technique: make the code obvious

    Make the code as explicit as possible, even if the language syntax allows them to be implicit. Here are some examples:

    • [Java] Use explicit type conversion instead of implicit type conversion.
    • [Java, Python] Use parentheses/braces to show grouping even when they can be skipped.
    • [Java, Python] Use enumerations when a certain variable can take only a small number of finite values. For example, instead of declaring the variable 'state' as an integer and using values 0,1,2 to denote the states 'starting', 'enabled', and 'disabled' respectively, declare 'state' as type SystemState and define an enumeration SystemState that has values 'STARTING', 'ENABLED', and 'DISABLED'.

    Intermediate

    Structure Code Logically

    Can improve code quality using technique: structure code logically

    Lay out the code so that it adheres to the logical structure. The code should read like a story. Just like we use section breaks, chapters and paragraphs to organize a story, use classes, methods, indentation and line spacing in your code to group related segments of the code. For example, you can use blank lines to group related statements together. Sometimes, the correctness of your code does not depend on the order in which you perform certain intermediary steps. Nevertheless, this order may affect the clarity of the story you are trying to tell. Choose the order that makes the story most readable.

    Do Not 'Trip Up' Reader

    Can improve code quality using technique: do not 'trip up' reader

    Avoid things that would make the reader go ‘huh?’, such as,

    • unused parameters in the method signature
    • similar things look different
    • different things that look similar
    • multiple statements in the same line
    • data flow anomalies such as, pre-assigning values to variables and modifying it without any use of the pre-assigned value

    Practice KISSing

    Can improve code quality using technique: practice kissing

    As the old adage goes, "keep it simple, stupid” (KISS). Do not try to write ‘clever’ code. For example, do not dismiss the brute-force yet simple solution in favor of a complicated one because of some ‘supposed benefits’ such as 'better reusability' unless you have a strong justification.

    Debugging is twice as hard as writing the code in the first place. Therefore, if you write the code as cleverly as possible, you are, by definition, not smart enough to debug it. --Brian W. Kernighan

    Programs must be written for people to read, and only incidentally for machines to execute. --Abelson and Sussman

    Avoid Premature Optimizations

    Can improve code quality using technique: avoid premature optimizations

    Optimizing code prematurely has several drawbacks:

    • We may not know which parts are the real performance bottlenecks. This is especially the case when the code undergoes transformations (e.g. compiling, minifying, transpiling, etc.) before it becomes an executable. Ideally, you should use a profiler tool to identify the actual bottlenecks of the code first, and optimize only those parts.
    • Optimizing can complicate the code, affecting correctness and understandability
    • Hand-optimized code can be harder for the compiler to optimize (the simpler the code, the easier for the compiler to optimize it). In many cases a compiler can do a better job of optimizing the runtime code if you don't get in the way by trying to hand-optimize the source code.

    A popular saying in the industry is make it work, make it right, make it fast which means in most cases getting the code to perform correctly should take priority over optimizing it. If the code doesn't work correctly, it has no value on matter how fast/efficient it it.

    Premature optimization is the root of all evil in programming. --Donald Knuth

    Note that there are cases where optimizing takes priority over other things e.g. when writing code for resource-constrained environments. This guideline simply a caution that you should optimize only when it is really needed.

    SLAP Hard

    Can improve code quality using technique: SLAP hard

    Avoid varying the level of abstraction within a code fragment. Note: The Productive Programmer (by Neal Ford) calls this the SLAP principle i.e. Single Level of Abstraction Per method.

    Example:

    Bad

    readData();
    salary = basic*rise+1000;
    tax = (taxable?salary*0.07:0);
    displayResult();
    

    Good

    readData();
    processData();
    displayResult();
    
     

    Design → Design Fundamentals → Abstraction →

    What

    Abstraction is a technique for dealing with complexity. It works by establishing a level of complexity we are interested in, and suppressing the more complex details below that level.

    The guiding principle of abstraction is that only details that are relevant to the current perspective or the task at hand needs to be considered. As most programs are written to solve complex problems involving large amounts of intricate details, it is impossible to deal with all these details at the same time. That is where abstraction can help.

    Ignoring lower level data items and thinking in terms of bigger entities is called data abstraction.

    Within a certain software component, we might deal with a user data type, while ignoring the details contained in the user data item such as name, and date of birth. These details have been ‘abstracted away’ as they do not affect the task of that software component.

    Control abstraction abstracts away details of the actual control flow to focus on tasks at a simplified level.

    print(“Hello”) is an abstraction of the actual output mechanism within the computer.

    Abstraction can be applied repeatedly to obtain progressively higher levels of abstractions.

    An example of different levels of data abstraction: a File is a data item that is at a higher level than an array and an array is at a higher level than a bit.

    An example of different levels of control abstraction: execute(Game) is at a higher level than print(Char) which is at a higher than an Assembly language instruction MOV.

    Abstraction is a general concept that is not limited to just data or control abstractions.

    Some more general examples of abstraction:

    • An OOP class is an abstraction over related data and behaviors.
    • An architecture is a higher-level abstraction of the design of a software.
    • Models (e.g., UML models) are abstractions of some aspect of reality.

    Advanced

    Make the Happy Path Prominent

    Can improve code quality using technique: make the happy path prominent

    The happy path (i.e. the execution path taken when everything goes well) should be clear and prominent in your code. Restructure the code to make the happy path unindented as much as possible. It is the ‘unusual’ cases that should be indented. Someone reading the code should not get distracted by alternative paths taken when error conditions happen. One technique that could help in this regard is the use of guard clauses.

    Example:

    Bad

    if (!isUnusualCase) {  //detecting an unusual condition
        if (!isErrorCase) {
            start();    //main path
            process();
            cleanup();
            exit();
        } else {
            handleError();
        }
    } else {
        handleUnusualCase(); //handling that unusual condition
    }
    

    In the code above,

    • Unusual condition detection is separated from their handling.
    • Main path is nested deeply.

    Good

    if (isUnusualCase) { //Guard Clause
        handleUnusualCase();
        return;
    }
    
    if (isErrorCase) { //Guard Clause
        handleError();
        return;
    }
    
    start();
    process();
    cleanup();
    exit();
    

    In contrast, the above code

    • deals with unusual conditions as soon as they are detected so that the reader doesn't have to remember them for long.
    • keeps the main path un-indented.

    Guideline: Follow a Standard

    Introduction

    Can explain the need for following a standard

    One essential way to improve code quality is to follow a consistent style. That is why software engineers follow a strict coding standard (aka style guide).

    The aim of a coding standard is to make the entire code base look like it was written by one person. A coding standard is usually specific to a programming language and specifies guidelines such as the location of opening and closing braces, indentation styles and naming styles (e.g. whether to use Hungarian style, Pascal casing, Camel casing, etc.). It is important that the whole team/company use the same coding standard and that standard is not generally inconsistent with typical industry practices. If a company's coding standards is very different from what is used typically in the industry, new recruits will take longer to get used to the company's coding style.

    💡 IDEs can help to enforce some parts of a coding standard e.g. indentation rules.

    What is the recommended approach regarding coding standards?

    c

    What is the aim of using a coding standard? How does it help?

    Basic

    Can follow simple mechanical style rules

    Learn basic guidelines of the Java coding standard (by OSS-Generic)

    Consider the code given below:

    import java.util.*;
    
    public class Task {
        public static final String descriptionPrefix = "description: ";
        private String description;
        private boolean important;
        List<String> pastDescription = new ArrayList<>(); // a list of past descriptions
    
        public Task(String d) {
          this.description = d;
          if (!d.isEmpty())
              this.important = true;
        }
    
        public String getAsXML() { return "<task>"+description+"</task>"; }
    
        /**
         * Print the description as a string.
         */
        public void printingDescription(){ System.out.println(this); }
    
        @Override
        public String toString() { return descriptionPrefix + description; }
    }
    

    In what ways the code violate the basic guidelines (i.e., those marked with one ⭐️) of the OSS-Generic Java Coding Standard given here?

    Here are three:

    • descriptionPrefix is a constant and should be named DESCRIPTION_PREFIX
    • method name printingDescription() should be named as printDescription()
    • boolean variable important should be named to sound boolean e.g., isImportant

    There are many more.

    Intermediate

    Can follow intermediate style rules

    Go through the provided Java coding standard and learn the intermediate style rules.

    According to the given Java coding standard, which one of these is not a good name?

    b

    Explanation: checkWeight is an action. Naming variables as actions makes the code harder to follow. isWeightValid may be a better name.

    Repeat the exercise in the panel below but also find violations of intermediate level guidelines.

    Consider the code given below:

    import java.util.*;
    
    public class Task {
        public static final String descriptionPrefix = "description: ";
        private String description;
        private boolean important;
        List<String> pastDescription = new ArrayList<>(); // a list of past descriptions
    
        public Task(String d) {
          this.description = d;
          if (!d.isEmpty())
              this.important = true;
        }
    
        public String getAsXML() { return "<task>"+description+"</task>"; }
    
        /**
         * Print the description as a string.
         */
        public void printingDescription(){ System.out.println(this); }
    
        @Override
        public String toString() { return descriptionPrefix + description; }
    }
    

    In what ways the code violate the basic guidelines (i.e., those marked with one ⭐️) of the OSS-Generic Java Coding Standard given here?

    Here are three:

    • descriptionPrefix is a constant and should be named DESCRIPTION_PREFIX
    • method name printingDescription() should be named as printDescription()
    • boolean variable important should be named to sound boolean e.g., isImportant

    There are many more.

    Here's one you are more likely to miss:

    • * Print the description as a string.* Prints the description as a string.

    There are more.

    Guideline: Name Well

    Introduction

    Can explain the need for good names in code

    Proper naming improves the readability. It also reduces bugs caused by ambiguities regarding the intent of a variable or a method.

    There are only two hard things in Computer Science: cache invalidation and naming things. -- Phil Karlton

    Basic

    Use Nouns for Things and Verbs for Actions

    Can improve code quality using technique: use nouns for things and verbs for actions

    Every system is built from a domain-specific language designed by the programmers to describe that system. Functions are the verbs of that language, and classes are the nouns. ― Robert C. Martin, Clean Code: A Handbook of Agile Software Craftsmanship

    Use nouns for classes/variables and verbs for methods/functions.

    Examples:

    Name for a Bad Good
    Class CheckLimit LimitChecker
    method result() calculate()

    Distinguish clearly between single-valued and multivalued variables.

    Examples:

    Good

    Person student;
    ArrayList<Person> students;
    

    Good

    student = Person('Jim')
    students = [Person('Jim'), Person('Alice')]
    

    Use Standard Words

    Can improve code quality using technique: use standard words

    Use correct spelling in names. Avoid 'texting-style' spelling. Avoid foreign language words, slang, and names that are only meaningful within specific contexts/times e.g. terms from private jokes, a TV show currently popular in your country

    Intermediate

    Use Name to Explain

    Can improve code quality using technique: use name to explain

    A name is not just for differentiation; it should explain the named entity to the reader accurately and at a sufficient level of detail.

    Examples:

    Bad Good
    processInput() (what 'process'?) removeWhiteSpaceFromInput()
    flag isValidInput
    temp

    If the name has multiple words, they should be in a sensible order.

    Examples:

    Bad Good
    bySizeOrder() orderBySize()

    Imagine going to the doctor's and saying "My eye1 is swollen"! Don’t use numbers or case to distinguish names.

    Examples:

    Bad Bad Good
    value1, value2 value, Value originalValue, finalValue

    Not Too Long, Not Too Short

    Can improve code quality using technique: not too long, not too short

    While it is preferable not to have lengthy names, names that are 'too short' are even worse. If you must abbreviate or use acronyms, do it consistently. Explain their full meaning at an obvious location.

    Avoid Misleading Names

    Can improve code quality using technique: avoid misleading names

    Related things should be named similarly, while unrelated things should NOT.

    Example: Consider these variables

    • colorBlack : hex value for color black
    • colorWhite : hex value for color white
    • colorBlue : number of times blue is used
    • hexForRed : : hex value for color red

    This is misleading because colorBlue is named similar to colorWhite and colorBlack but has a different purpose while hexForRed is named differently but has very similar purpose to the first two variables. The following is better:

    • hexForBlack hexForWhite hexForRed
    • blueColorCount

    Avoid misleading or ambiguous names (e.g. those with multiple meanings), similar sounding names, hard-to-pronounce ones (e.g. avoid ambiguities like "is that a lowercase L, capital I or number 1?", or "is that number 0 or letter O?"), almost similar names.

    Examples:

    Bad Good Reason
    phase0 phaseZero Is that zero or letter O?
    rwrLgtDirn rowerLegitDirection Hard to pronounce
    right left wrong rightDirection leftDirection wrongResponse right is for 'correct' or 'opposite of 'left'?
    redBooks readBooks redColorBooks booksRead red and read (past tense) sounds the same
    FiletMignon egg If the requirement is just a name of a food, egg is a much easier to type/say choice than FiletMignon

    Guideline: Avoid Unsafe Shortcuts

    Introduction

    Can explain the need for avoiding error-prone shortcuts

    It is safer to use language constructs in the way they are meant to be used, even if the language allows shortcuts. Some such coding practices are common sources of bugs. Know them and avoid them.

    Basic

    Use the Default Branch

    Can improve code quality using technique: use the default branch

    Always include a default branch in case statements.

    Furthermore, use it for the intended default action and not just to execute the last option. If there is no default action, you can use the 'default' branch to detect errors (i.e. if execution reached the default branch, throw an exception). This also applies to the final else of an if-else construct. That is, the final else should mean 'everything else', and not the final option. Do not use else when an if condition can be explicitly specified, unless there is absolutely no other possibility.

    Bad

    if (red) print "red";
    else print "blue";
    

    Good

    if (red) print "red";
    else if (blue) print "blue";
    else error("incorrect input");
    

    Don't Recycle Variables or Parameters

    Can improve code quality using technique: don't recycle variables or parameters

    • Use one variable for one purpose. Do not reuse a variable for a different purpose other than its intended one, just because the data type is the same.
    • Do not reuse formal parameters as local variables inside the method.

    Bad

    double computeRectangleArea(double length, double width) {
        length = length * width;
        return length;
    }
    
    

    Good

    double computeRectangleArea(double length, double width) {
        double area;
        area = length * width;
        return area;
    }
    

    Avoid Empty Catch Blocks

    Can improve code quality using technique: avoid empty catch blocks

    Never write an empty catch statement. At least give a comment to explain why the catch block is left empty.

    Delete Dead Code

    Can improve code quality using technique: delete dead code

    We all feel reluctant to delete code we have painstakingly written, even if we have no use for that code any more ("I spent a lot of time writing that code; what if we need it again?"). Consider all code as baggage you have to carry; get rid of unused code the moment it becomes redundant. If you need that code again, simply recover it from the revision control tool you are using. Deleting code you wrote previously is a sign that you are improving.

    Intermediate

    Minimise Scope of Variables

    Can improve code quality using technique: minimise scope of variables

    Minimize global variables. Global variables may be the most convenient way to pass information around, but they do create implicit links between code segments that use the global variable. Avoid them as much as possible.

    Define variables in the least possible scope. For example, if the variable is used only within the if block of the conditional statement, it should be declared inside that if block.

    The most powerful technique for minimizing the scope of a local variable is to declare it where it is first used. -- Effective Java, by Joshua Bloch

    Resources:

    Minimise Code Duplication

    Can improve code quality using technique: minimise code duplication

    Code duplication, especially when you copy-paste-modify code, often indicates a poor quality implementation. While it may not be possible to have zero duplication, always think twice before duplicating code; most often there is a better alternative.

    This guideline is closely related to the DRY Principle.

    Supplmentary → Principles →

    DRY Principle

    DRY (Don't Repeat Yourself) Principle: Every piece of knowledge must have a single, unambiguous, authoritative representation within a system The Pragmatic Programmer, by Andy Hunt and Dave Thomas

    This principle guards against duplication of information.

    The functionality implemented twice is a violation of the DRY principle even if the two implementations are different.

    The value a system-wide timeout being defined in multiple places is a violation of DRY.

    Guideline: Comment Minimally, but Sufficiently

    Introduction

    Can explain the need for commenting minimally but sufficiently

    Good code is its own best documentation. As you’re about to add a comment, ask yourself, ‘How can I improve the code so that this comment isn’t needed?’ Improve the code and then document it to make it even clearer. --Steve McConnell, Author of Clean Code

    Some think commenting heavily increases the 'code quality'. This is not so. Avoid writing comments to explain bad code. Improve the code to make it self-explanatory.

    Basic

    Do Not Repeat the Obvious

    Can improve code quality using technique: do not repeat the obvious

    If the code is self-explanatory, refrain from repeating the description in a comment just for the sake of 'good documentation'.

    Bad

    // increment x
    x++;
    
    //trim the input
    trimInput();
    

    Write to the Reader

    Can improve code quality using technique: write to the reader

    Do not write comments as if they are private notes to self. Instead, write them well enough to be understood by another programmer. One type of comments that is almost always useful is the header comment that you write for a class or an operation to explain its purpose.

    Examples:

    Bad Reason: this comment will only make sense to the person who wrote it

    // a quick trim function used to fix bug I detected overnight
    void trimInput(){
        ....
    }
    

    Good

    /** Trims the input of leading and trailing spaces */
    void trimInput(){
        ....
    }
    

    Bad Reason: this comment will only make sense to the person who wrote it

    # a quick trim function used to fix bug I detected overnight
    def trim_input():
        ...
    

    Good

    def trim_input():
    """Trim the input of leading and trailing spaces"""
        ...
    

    Intermediate

    Explain WHAT and WHY, not HOW

    Can improve code quality using technique: explain what and why, not how

    Comments should explain what and why aspect of the code, rather than the how aspect.

    What : The specification of what the code supposed to do. The reader can compare such comments to the implementation to verify if the implementation is correct

    Example: This method is possibly buggy because the implementation does not seem to match the comment. In this case the comment could help the reader to detect the bug.

    /** Removes all spaces from the {@code input} */
    void compact(String input){
        input.trim();
    }
    

    Why : The rationale for the current implementation.

    Example: Without this comment, the reader will not know the reason for calling this method.

    // Remove spaces to comply with IE23.5 formatting rules
    compact(input);
    

    How : The explanation for how the code works. This should already be apparent from the code, if the code is self-explanatory. Adding comments to explain the same thing is redundant.

    Example:

    Bad Reason: Comment explains how the code works.

    // return true if both left end and right end are correct or the size has not incremented
    return (left && right) || (input.size() == size);
    

    Good Reason: Code refactored to be self-explanatory. Comment no longer needed.

    
    boolean isSameSize = (input.size() == size) ;
    return (isLeftEndCorrect && isRightEndCorrect) || isSameSize;
    

    B. Quality of your feature(s)

    Evaluates: How good is your Quality Assurance?

    Based on:

    1. bugs you found in the v1.4 Practical Exam
    2. bugs in your work found by others during the PE
    3. testability of your feature (you will lose marks if testers feel that your feature is hard to test manually)
    4. your test code (you will lose marks if you don't meet our expectations for automated testing)
    5. our own manual testing (when necessary)
     
    • There is no requirement for a minimum coverage level. Note that in a production environment you are often required to have at least 90% of the code covered by tests. In this project, it can be less. The less coverage you have, the higher the risk of regression bugs, which will cost marks if not fixed before the final submission.
    • You must write some tests so that we can evaluate your ability to write tests.
    • How much of each type of testing should you do? We expect you to decide. You learned different types of testing and what they try to achieve. Based on that, you should decide how much of each type is required. Similarly, you can decide to what extent you want to automate tests, depending on the benefits and the effort required.

    Evaluates: How good are the sections you wrote for the user guide and the developer guide?

    Based on: the relevant sections of your project portfolio. Criteria considered:

    • Explanation should be clear and written to match the audience.
    • Good use of visuals to complement text.
    • Use of correct UML notations (where applicable)

    A. Process:

    Evaluates: How well you did in project management related aspects of the project, as an individual and as a team

    Based on: Supervisor observations of project milestones and GitHub data.

    Milestones need to be reached the midnight before of the tutorial for it to be counted as achieved. To get a good grade for this aspect, achieve at least 60% of the recommended milestone progress.

    Other criteria:

    • Good use of GitHub milestones
    • Good use of GitHub release mechanism
    • Good version control, based on the repo
    • Reasonable attempt to use the forking workflow
    • Good task definition, assignment and tracking, based on the issue tracker
    • Good use of buffers (opposite: everything at the last minute)
    • Project done iteratively and incrementally (opposite: doing most of the work in one big burst)

    B. Team-tasks:

    Evaluates: How much did you contribute to team-tasks?

    Based on: peer evaluations and tutor observations

    Relevant: [Admin Project Scope → Examples of team-tasks ]

     

    Here is a non-exhaustive list of team-tasks:

    1. Necessary general code enhancements e.g.,
      1. Work related to renaming the product
      2. Work related to changing the product icon
      3. Morphing the product into a different product
    2. Setting up the GitHub, Travis, AppVeyor, etc.
    3. Maintaining the issue tracker
    4. Release management
    5. Updating user/developer docs that are not specific to a feature e.g. documenting the target user profile
    6. Incorporating more useful tools/libraries/frameworks into the product or the project workflow (e.g. automate more aspects of the project workflow using a GitHub plugin)

    Admin Participation Marks

    To receive full 10 marks allocated for participation, earn at least 15 participation points.

    There are 30+ available points to choose from:

    • Good peer ratings
      • Criteria for professional conduct (1 point for each criterion, max 7)
      • Competency criteria (2 points for each, max 6)

    Only those who submit peer evaluations can earn participation points from peer evaluations they receive.

    • In-lecture quizzes (1 each, max 10 points)
    • Enhanced AB1-AB3 (2 points for AB-1, 3 points each for AB-2 and AB-3)
    • Module admin tasks done on time and as instructed
      • Peer evaluations (1 points each)
      • Pre-module survey (1 points)

    If your response in the pre-module survey is not usable, you will not earn points for this exercise.

    Relevant: [Admin Peer Evaluations → Criteria ]

     

    Peer evaluation criteria: professional conduct

    • Professional Communication :
      • Communicates sufficiently and professionally. e.g. Does not use offensive language or excessive slang in project communications.
      • Responds to communication from team members in a timely manner (e.g. within 24 hours).
    • Punctuality: Does not cause others to waste time or slow down project progress by frequent tardiness.
    • Dependability: Promises what can be done, and delivers what was promised.
    • Effort: Puts in sufficient effort to, and tries their best to keep up with the module/project pace. Seeks help from others when necessary.
    • Quality: Does not deliver work products that seem to be below the student's competence level i.e. tries their best to make the work product as high quality as possible within her competency level.
    • Meticulousness:
      • Rarely overlooks submission requirements.
      • Rarely misses compulsory module activities such as pre-module survey.
    • Teamwork: How willing are you to act as part of a team, contribute to team-level tasks, adhere to team decisions, etc.

    Peer evaluation criteria: competency

    • Technical Competency: Able to gain competency in all the required tools and techniques.
    • Mentoring skills: Helps others when possible. Able to mentor others well.
    • Communication skills: Able to communicate (written and spoken) well. Takes initiative in discussions.

    Admin Project: Supervision

    Your tutor will serve as your project supervisor too.

    The supervisor's main job is to observe, facilitate self/peer learning, evaluate, and give feedback.

    Tutorial time is the main avenue for meeting your supervisor. In addition, you can meet the supervisor before/after the tutorial, or any other time, as many times you need, subject to availability in his/her schedule.

    Note that it is not the supervisor’s job to chase you down and give help. It is up to you to get as much feedback from them as you need. You are free to request more feedback from the supervisor as necessary. Similarly, it is not the job of the supervisor to lead your project to success.

    Admin Appendix C (FAQs) → What if I don’t carry around a laptop?

    What if I don’t carry around a laptop?

    If you do not have a laptop or prefer not to bring the laptop, it is up to you to show your work to the tutor in some way (e.g. by connecting to your home PC remotely), without requiring extra time/effort from the tutor or team members.

    Reason: As you enjoy the benefits of not bring the laptop; you (not others) should bear the cost too.